Cho P(x) là một đa thức bậc 4 có hệ số cao nhất là 1 thỏa mãn điều kiện :
P(1)=3,P(3)=11,P(5)=27.Tính P(-2)+7P(6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{55-x}{1963}\) + \(\dfrac{50-x}{1968}\) + \(\dfrac{45-x}{1973}\) + \(\dfrac{40-x}{1978}\) + 4 = 0
(1 + \(\dfrac{55-x}{1963}\) ) + ( 1 + \(\dfrac{50-x}{1968}\)) + (1+ \(\dfrac{45-x}{1973}\))+ (1 + \(\dfrac{40-x}{1978}\)) = 0
\(\dfrac{1963+55-x}{1963}\) + \(\dfrac{1968+50-x}{1968}\)+\(\dfrac{1973+45-x}{1973}\)+\(\dfrac{1978+40-x}{1978}\)=0
\(\dfrac{2018-x}{1963}\)+\(\dfrac{2018-x}{1968}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1978}\)=0
(2018 - \(x\))\(\times\)( \(\dfrac{1}{1963}\)+\(\dfrac{1}{1986}\)+\(\dfrac{1}{1973}\)+) =0
2018 \(-x\) = 0
\(x\) = 2018
Yêu cầu đề bài có vẻ không rõ ràng lắm, bạn viết lại được không?
a, n \(\in\) Z sao cho (2n - 3) \(⋮\) (n+1)
2n + 2 - 5 ⋮ n + 1
2(n+1) - 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
Ý b đề ko rõ ràng em nhé
Để chứng minh điều này, ta có thể sử dụng các bước sau:
Vậy ta đã chứng minh được DH song song với AC.
a/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{90}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\cdot3=30\\y=10\cdot6=60\end{matrix}\right.\)
Vậy ...
b/Ta có:
\(\dfrac{x}{3}=\dfrac{4x}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{4x}{12}=\dfrac{y}{6}=\dfrac{4x-y}{12-6}=\dfrac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\cdot3=21\\y=7\cdot6=42\end{matrix}\right.\)
Vậy ...
c/Đặt \(x=k;y=k\) ( k \(\in\) N* )
\(\Rightarrow x=3k;=6k\)
Mà \(xy=162\)
\(\Rightarrow3k\cdot6k=162\)
\(\Rightarrow18k^2=162\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\x=\left(-3\right)\cdot3=-9\\y=3\cdot6=18\\y=\left(-3\right)\cdot6=-18\end{matrix}\right.\)
Vậy ...
#NoSimp
Vì \(x\) = 2 là nghiệm của F(\(x\)) =a\(x\)2 - a\(x\) + 2
Nên F(2) = 0. Ta có F(2) = a \(\times\) 22 - a \(\times\) 2 + 2 = 0
4a - 2a + 2 = 0
2a + 2 = 0
a = -2: 2 = -1
Kết luận a = -1 là giá trị thỏa mãn yêu cầu đề bài
Số ngày hoàn thành công việc này là: \(\left(12\cdot50\right)\div40=15\)\((\)ngày\()\)
Để chứng tỏ x=-1 là một nghiệm của đa thức p(x), ta cần chứng minh rằng p(-1) = 0.
Thay x = -1 vào đa thức p(x), ta được:
p(-1)=(-1)^2 + a(-1) + b = 1 - a + b
Vì a - b = 1, nên ta có thể viết lại a = b + 1. Thay a = b + 1 vào biểu thức trên, ta được:
p(-1) =1- (b + 1) + b = 0
Vậy x = -1 là một nghiệm của đa thức p(x).
Để chứng tỏ x = -1 là một nghiệm của p(x), ta chỉ cần thay x = -1 vào đa thức p(x) và kiểm tra xem có bằng 0 hay không. Ta có:
p(-1) = (-1)^2 + a(-1) + b
= 1 - a + b
= 1 - (a - b) - b
= 1 - 1 - b
= -b
Do đó, nếu p(-1) = 0 thì x = -1 là một nghiệm của p(x). Điều này tương đương với b = 0. Vậy để x = -1 là một nghiệm của p(x), ta cần có điều kiện b = 0.
Xét g(x) = f(x) - x^2 -2
g(x) có bậc 4 và g(1)=g(3)=g(5)=0
Vậy g(x)=(x-1)(x-3)(x-5)(x+a) vì f có hệ số cao nhất là 1
=> f(x) = (x-1)(x-3) (x-5)(x+a) + x^2 +2
f(-2)=-105(a-2)+6=216-105a
f(6) 15(a+6) + 38 = 128 +15a =
f(-2)+7f(6)=216 - 105a + 896 + 105a = 1112
# Ninh OSS