Chứng minh đa thức nhau ko phụ thuộc vào biến
\(\frac{\left(x+y\right)^2}{x}.\left[\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right]-\frac{5x-3y}{y-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(n+2021\right)=p\)
Đặt \(p^2+2022=k^2\)
\(\Rightarrow k^2-p^2=2022\)
\(\Rightarrow\left(k-p\right)\left(k+p\right)=2022\)
Đặt \(a=k-p;b=k+p\)
\(\Rightarrow a.b=2022\) (1) là 1 số chẵn => trong 2 số a; b phải có ít nhất 1 số chẵn (2)
Ta có \(a+b=k-p+k+p=2k\) là 1 số chẵn => a; b phải cùng chẵn hoặc cùng lẻ (3)
Từ (2) và (3) => a; b phải cùng chẵn
Đặt \(a=2m;b=2q\left(m;q\in Z\right)\)
Từ (1) \(\Rightarrow a.b=2m.2q=2022\Rightarrow4mq=2022\Rightarrow m.q=\frac{2022}{4}\)
Vì n là số nguyên => n+2021=p là số nguyên => k là số nguyên => a; b là số nguyên => m;q là số nguyên => m.q là số nguyên
Mà 2022 không chia hết cho 4 => m.q không nguyên mâu thuẫn với m.q là số nguyên
Nên không tồn tại số tự nhiên m để \(\left(n+2021\right)^2+2022\) là số chính phương
Hay \(\left(n+2021\right)^2+2022\) không là số chính phương \(\forall n\)
TL
2x+6 ≠ 0
<=> 2x ≠ -6
<=> x ≠-3
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
\(\frac{\left(x+y\right)^2}{x}.\left[\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right]-\frac{5x-3y}{y-x}\)
\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right]-\frac{5x-3y}{y-x}\)
\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x\left(x-y\right)}{\left(x+y\right)^2\left(x-y\right)}-\frac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)^2}\right]-\frac{5x-3y}{y-x}\)
\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}\right]-\frac{5x-3y}{y-x}\)
\(=\frac{\left(x+y\right)^2}{x}.\frac{-2xy}{\left(x+y\right)^2\left(x-y\right)}-\frac{5x-3y}{y-x}\)
\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)
\(=\frac{-2y+5x-3y}{x-y}\)
\(=\frac{5x-5y}{x-y}\)
\(=\frac{5\left(x-y\right)}{x-y}\)
\(=5\)
Vậy: ...