K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

a. $99^3+1+3(99^2+99)=99^3+3.99^2.1+3.99.1^2+1^3=(99+1)^3=100^3=1000000$

b. $11^3-1-3(11^2-11)=11^3-3.11^2.1+3.11.1^2-1^3=(11-1)^3=10^3=1000$

26 tháng 11 2023

a) \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(5a+6b\right)\left(7-2b\right)\)

b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)

\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)

\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)

\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)

\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

26 tháng 11 2023

a, 70a + 84b - 20ab - 24b2

 = 14.(5a + 6b) - 4b(5a + 6b)

= (5a + 6b).(14 - 4b) 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Bài 4:

a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.

Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$

$\Leftrightarrow x<3$ 

b. 

$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$

Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.

$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$

$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Bài 5:

\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)

\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)

26 tháng 11 2023

x²y + xy² - x - y

= (x²y + xy²) - (x + y)

= xy(x + y) - (x + y)

= (x + y)(xy - 1)