Cho góc xOy, A thuộc Ox, B thuộc Oy. Tìm điều kiện của A,B sao cho \(\overrightarrow{OA}+\overrightarrow{OB}\)thuộc tia phần giác góc xOy.
TEAM 10 GIẢI NHANH HỘ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌi H,G,O là trực tâm , trọng tâm và tâm đường tròn ngoại tiếp tam giác ABC , cần chứng minh H,G,O
Vẽ hình bình hành BHCK
\(\Rightarrow\hept{\begin{cases}\vec{HB}=\vec{CK}\\KC//BH\end{cases}}\)
\(\Rightarrow KC\perp AC\)
Xét tam giác ACK có \(\widehat{ACK}=90^o\Rightarrow\overline{A,O,K}\)(Do là đường kính)
Có \(\vec{HA}+\vec{HB}+\vec{HC}=2\vec{HO}\)
\(\Leftrightarrow3\vec{HG}+\vec{GA}+\vec{GB}+\vec{GC}=2\vec{HO}\)
\(\Leftrightarrow3\vec{HG}+\vec{0}=2\vec{HO}\)(Hệ thức trọng tâm)
\(\Rightarrow\vec{HG}=\frac{2}{3}\vec{HO}\)
\(\Rightarrow\overline{H,G,O}\left(Dpcm\right)\)
∆ABC có H là trực tâm, G là trọng tâm, O là giao điểm của 3 đường trung trực.
Gọi M là trung điểm của BC. Lấy D đối xứng với A qua O
Ta có: OA = OC (tính chất của điểm thuộc đường trung trực)
Mà OA = OD (theo cách chọn điểm phụ) nên OA = OC = OD
Do đó ∆ACD vuông tại C \(\Rightarrow CD\perp AC\)
Mà \(\Rightarrow BH\perp AC\left(gt\right)\Rightarrow BH//CD\)(1)
Chứng minh tương tự: \(CH//BD\)(2)
Từ (1) và (2) suy ra BHCD là hình bình hành có M là trung điểm của BC nên M cũng là trung điểm của HD (cũng suy ra được H, M, D thẳng hàng)
∆ADH có AM là trung tuyến và \(AG=\frac{2}{3}AM\left(gt\right)\)nên G là trọng tâm
\(\Rightarrow\)Trung tuyến thứ hai là HO đi qua G
Vậy H, G, O thẳng hàng
1) Số % học sinh biết chơi bóng chuyền và bóng bàn là
50% + 65% - 30% = 85%(tổng số học sinh)(Mình trừ đi 30% vì khi cộng 50 và 65 sẽ trong đó số hs biết chơi cả 2 sẽ đc tính 2 lần nên phải bớt đi 1 làn nha)
Số % học sinh ko biết chs cả 2 là :
100% - 85% = 15%(tổng số học sinh)
Số học sinh ko biết chs cả 2 là :
200.15%=30(học sinh)
Học tốt nha bạn