Cho a,b,c,d là các số thực bất kỳ thỏa mãn \(\left(a^2+b^2+c^2\right)\cdot\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a,b,c\ne0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+8y^3\right)\div\left(x+2y\right)\)
\(=\left[x^3+\left(2y\right)^3\right]\div\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\div\left(x+2y\right)\)
\(=x^2-2xy+4y^2\)
\(\frac{x^3+8y^3}{x+2y}\)
\(=\frac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\frac{\left(x+2y\right)\left(x^2+4y^2-2xy\right)}{x+2y}\)
\(=x^2+4y^2-2xy\)
Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)
\(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => đpcm
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+c}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>1\)
Ta luôn có phân số \(\frac{m}{n}< \frac{m+z}{n+z}\)với \(m>n>0;z>0\)
\(\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
đố các thánh làm toán giải đc tìm đc a;b;c tôi lạy lm thánh
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
\(\Leftrightarrow\frac{1}{a+b-x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}\Leftrightarrow\frac{x-\left(a+b\right)+x}{\left(a+b-x\right)x}=\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{2x-\left(a+b\right)}{\left(a+b-x\right)x}=\frac{a+b}{ab}\Rightarrow\left(2x-\left(a+b\right)\right)ab=\left(a+b\right)\left(a+b-x\right)x\)
\(\Rightarrow2xab-\left(a+b\right)ab=x\left(a+b\right)^2-x^2\left(a+b\right)\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(\left(a+b\right)^2-2ab\right)-\left(a+b\right)ab=0\)
\(\Leftrightarrow x^2\left(a+b\right)-x\left(a^2+b^2\right)-\left(a+b\right)ab=0\)
bài này là bđt bunhia copxi khi xảy ra dấu =
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
c/m nhân tung ra thôi bạn
!@@@