Khi \(\frac{x+y+z}{3}=\sqrt{673}.\)Chứng minh \(xy+yz+zx\text{≤}2019\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
What the heo, lớp 7 đã khó nay lại còn lớp 8, thôi, chịu luôn !!!!!!
ta có :
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\left(\text{ bất đẳng thức Cauchy}\right)\)
mà ta lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
vậy ta có : \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)
Phản ứng oxi hóa – khử
Đây là phản ứng hóa học xảy ra đồng thời cả sự oxi hóa và sự khử. Tuy nhiên, chúng đã được giản lược trong số những loại phản ứng hóa học lớp 8. Vì thế bạn sẽ không phải học về phản ứng oxi hóa – khử khi mới bắt đầu làm quen.
@minhnguvn
VD
Phản ứng oxy hóa-khử: Một nguyên tử nhận được electron trong khi nguyên tử khác mất electron.
@minhnguvn
\(\frac{x+y+z}{3}=\sqrt{673}\). Bình phương hai vế \(\Rightarrow\left(\frac{x+y+z}{3}\right)^2=\left(\sqrt{673}\right)^2\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{9}=673\Leftrightarrow\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}=673.3=2019\)
Tiếp theo bạn chứng minh \(x^2+y^2+z^2\ge xy+xz+yz\)
( Dễ thôi, nhân đôi hai vế rồi chuyến sang vế trái tách ghép là được 3 hằng đẳng thức luôn \(\ge0\) )
Sau khi chứng minh được thì tiếp tục cái đẳng thức trên : v
\(\Rightarrow\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}\le\frac{xy+xz+yz+2\left(xy+xz+yz\right)}{3}\)
\(=\frac{3\left(xy+xz+yz\right)}{3}=xy+xz+yz\Rightarrow\frac{\left(x+y+z\right)^2}{3}\ge xy+xz+yz\)
. Vì \(\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}=\frac{\left(x+y+z\right)^2}{3}=2019\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{3}\ge xy+xz+yz\Leftrightarrow xy+xz+yz\le2019\) ( đpcm )