Một người gửi tiền tiết kiệm 100 000 000 đồng vào một ngân hàng. Hỏi sau 2 năm, người đó nhận được bao nhiêu tiền cả vốn lẫn lãi, biết rằng người đó gửi theo kỳ hạn c tháng, lãi suất kép là 5,3%/năm và người đó không rút lãi ở tất cả các định kỳ trước đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}-\dfrac{2x}{y}=4\\\left(x+\dfrac{1}{y}\right)^2+\dfrac{x}{y}\left(x+\dfrac{1}{y}\right)-\dfrac{2x}{y}=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=u\\\dfrac{x}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+u-2v=4\\u^2+uv-2v=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u^2+u-2v=4\\u\left(v-1\right)=0\end{matrix}\right.\)
TH1: \(u=0\) thế vào \(u^2+u-2v=4\Rightarrow v=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=0\\\dfrac{x}{y}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{2}\\y=\mp\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
TH2: \(v=1\) thế vào \(u^2+u-2v=4\Rightarrow u^2+u-6=0\Rightarrow\left[{}\begin{matrix}u=2\\u=-3\end{matrix}\right.\)
TH2.1: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\) tự giải
TH2.2: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=-3\\\dfrac{x}{y}=1\end{matrix}\right.\) tự giải
\(\sqrt[3]{x}-20+\sqrt{x}+15=7\)
\(\sqrt[3]{x}-20+15+\sqrt{x}=7\)
\(\sqrt[3]{x}-5+\sqrt{x}=7\)
\(\sqrt[3]{x}+\sqrt{x}=7+5\)
\(\sqrt[3]{x}+\sqrt{x}=12\)
còn lại mình chịu
\(\sqrt[3]{x}+\sqrt{x}=12=8+4\)
\(\sqrt[3]{x}=8\) và \(\sqrt{x}=4\)
Vậy x = 2
Hình bạn tự vẽ nhé
Ta có KB , KC là tiếp tuyến của (O)
= > \(KB\perp OB,OK\perp BC\)
Ta có \(KH\perp AO\) \(\Rightarrow\widehat{KHO}=\widehat{AMO}=90^0\left(KO\perp BC\right)\)
\(\Rightarrow\Delta OMA\sim\Delta OHK\left(g.g\right)\)
\(\Rightarrow\dfrac{OM}{OH}=\dfrac{OA}{OK}=>OM.OK=OH.OA\)
Mà \(KO\perp BC,OB\perp KB=>OB^2=OM.OK=> OH.OA=OB^2\)
\(=OE^2\left(OE=OB\right)\)
\(\Rightarrow\dfrac{OE}{OH}=\dfrac{OA}{OE}=>\Delta OEH\sim\Delta OAE\left(c.g.c\right)\)
\(=>\widehat{OEA}=\widehat{OHE}=90^0\) hay AE là tiếp tuyến của ( O )
\begin{equation}
\begin{aligned}
& (a c+b d)^2+(a d-b c)^2 \\
& =a^2 c^2+2 a b c d+b^2 d^2+a^2 d^2-2 a b c d+b^2 c^2 \\
& =\left(a^2 c^2+a^2 d^2\right)+\left(b^2 d^2+b^2 c^2\right) \\
& =a^2\left(c^2+d^2\right)+b^2\left(d^2+c^2\right) \\
& =\left(c^2+d^2\right)\left(a^2+b^2\right)
\end{aligned}
\end{equation}
số tiền lãi sau 2 năm là:
2 x (100 000 000 x 5,3) = 10,600,000 ( đồng )
Số tiền người đó nhận là:
100 000 000 + 10 600 000 = 20 600 000 ( đồng )