xn-1 ( x+y ) -y ( xn-1 + yn-1 )
Hãy rút gọn biểu thức sau ngắn gọn nhất có thể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÓ: \(a^2+b^2=c^2.\)Nên ta có:
\(P=\frac{\left(a+b\right)\left(a+\sqrt{a^2+b^2}\right)\left(b+\sqrt{a^2+b^2}\right)}{ab\sqrt{a^2+b^2}}\)
\(=\frac{a+b}{\sqrt{a^2+b^2}}.\frac{a+\sqrt{a^2+b^2}}{a}.\frac{b+\sqrt{a^2+b^2}}{b}\)
\(=\left(\sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{a^2+b^2}}\right).\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\).
Đặt: \(x^2=\frac{a^2}{a^2+b^2};y^2=\frac{b^2}{a^2+b^2}\Rightarrow x^2+y^2=1\). Ta có:
\(P=\left(x+y\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}+2\)\(\ge4\sqrt{x.y.\frac{1}{x}.\frac{1}{y}.\frac{x}{y}.\frac{y}{x}}+2=6.\)
Vậy GTNN của P = 6.Dấu bằng xảy ra khi x = y =1 hay tam giác ABC vuông cân.
\(x+y-x-y\)
\(=\left(x+y\right)-\left(x+y\right)\)
\(=0\)
\(25x^2+10xy+y^2\)
\(=\left(5x\right)^2+2.5x.y+y^2\)
\(=\left(5x+y\right)^2\)
(3-12x)(x-1)+(12x-8)(x+2)+x2=52
3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52
3x-3-12x2+12+12x2+24x-8x-16+x2=52
(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52
19x-7+x2=52
x(19-x)=52+7=59
mà 59 là số ng tố nên x rỗng
Vậy x E \(\theta\)
làm dùm bn 1 bài thôi
=( 2x -3 +x+5)(2x-3-x-5)=0
3x + 2=0
x = -2/3
x-8 =0
x = 8
x(2x-7)-4x+14=0
=> x(2x-7)-2(2x-7)=0
=> (x-2)(2x-7)=0
=> x=2 hoặc x=7/2
A B C M N H P
Cô hướng dẫn nhé.
a. Dễ thấy MN // HP nên NMPH là hình thang.
Xét tam giác vuông AHC có HN là trung tuyến ứng với cạnh huyền nên NH = HC = HA. Vậy thì tam giác NCH cân tại N
\(\Rightarrow\widehat{NHC}=\widehat{NCH}.\)
Do PM // AC nên \(\widehat{MPB}=\widehat{ACB}.\)
Vậy thì \(\widehat{NHC}=\widehat{MPB}\Rightarrow\widehat{NHP}=\widehat{MPH}\)
Vậy hình thang NMPH là hình thang cân.
b. Do NP // AB nên \(HM\perp AB\).
Lại có NMBP là hình bình hành nên NM = PB.
Vậy thì NM + HP = PB + PH = HB.
Xét tam giác AHB có HM là trung tuyến đồng thời đường cao nên nó là tam giác cân. Vậy HA = HB hay HA = MN + HP.
A B C M N
Cho tg ABC vuông tại A, AM là trung tuyến.
Kẻ MN vuông góc AB thì MN // AC. Do M là truung điểm BC nên MN là đường trung bình hay N là trung điểm AB.
Xét tam giác MAB có MN là đường cao đồng thời trung tuyến nên nó cân tại M hay MA = MB. Mà MA = MC nên ta có MA = MB = MC.
(Chính vì thế nên I là tâm đường tròn ngoại tiếp tam giác vuông ABC)
(3x−4).(2x+1)−(6x+5).(x−3)=3
6x2+3x-8x-4-6x2+18x-5x+15=3
8x+11=3
8x=3-11
8x=-8
x=-8:8
x=-1
\(\left(3x-4\right).\left(2x+1\right)-\left(6x+5\right).\left(x-3\right)=3\)
\(\Leftrightarrow6x^2+3x-8x-4-6x^2-18x+5x-15=3\)
\(\Leftrightarrow-18x-19=3\)
\(\Leftrightarrow-18x=-16\)
\(\Leftrightarrow x=\frac{8}{9}\)
\(\left(x-y\right).\left(x^2+xy+y^2\right)=x.x^2+x.xy+x.y^2-y.x^2-y.xy-y.y^2\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3+\left(x^2y-x^2y\right)+\left(xy^2-xy^2\right)-y^3\)
\(=x^3-y^3\)