Cho hình thang 𝐴𝐵𝐶𝐷ABCD (có hai đáy 𝐴𝐵=15AB=15 cm và 𝐶𝐷=19CD=19 cm). 𝑁N và 𝑀M lần lượt là trung điểm của hai đường chéo 𝐴𝐶AC và 𝐵𝐷BD. Độ dài 𝑀𝑁MN là
trả lời hộ mình với ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(92^3\equiv2\left(mod6\right)\)
\(\Rightarrow92^{30}\equiv\left(92^3\right)^{10}\left(mod6\right)\equiv2^{10}\left(mod6\right)\equiv4\left(mod6\right)\)
\(\Rightarrow92^{90}\equiv\left(92^{30}\right)^3\left(mod6\right)\equiv4^3\left(mod6\right)\equiv4\left(mod6\right)\)
\(\Rightarrow92^{93}\equiv92^{90}.92^3\left(mod6\right)\equiv4.2\left(mod6\right)\equiv2\left(mod6\right)\)
\(139^2\equiv1\left(mod6\right)\)
\(\Rightarrow139^{20}\equiv\left(139^2\right)^{10}\left(mod6\right)\equiv1^{10}\left(mod6\right)\equiv1\left(mod6\right)\)
\(\Rightarrow92^{93}+139^{20}+3\equiv2+1+3\left(mod6\right)\equiv6\left(mod6\right)\equiv0\left(mod6\right)\)
Vậy \(\left(92^{93}+139^{20}+3\right)⋮6\)
Tk:
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
\(#SGK\)
tk
Trong toán học, các số vô tỉ là tất cả các số thực không phải là số hữu tỉ, mà là các số được xây dựng từ các tỷ số (hoặc phân số) của các số nguyên.
Gọi số sách ở ngăn thứ nhất lúc đầu là x (cuốn sách; \(x\in\mathbb{N}^*\))
Số sách ở ngăn thứ hai lúc đầu là: \(400-x\) (cuốn sách)
Số sách ở ngăn thứ nhất nếu chuyển đi 80 cuốn sách là: \(x-80\) (cuốn sách)
Số sách ở ngăn thứ hai nếu thêm 80 cuốn sách là: \(400-x+80=480-x\) (cuốn sách)
Vì sau khi chuyển sách, số sách ở ngăn thứ hai gấp 3 lần số sách ở ngăn thứ nhất nên ta có phương trình:
\(480-x=3\left(x-80\right)\)
\(\Leftrightarrow480-x=3x-240\)
\(\Leftrightarrow4x=720\)
\(\Leftrightarrow x=180\left(tm\right)\)
Khi đó, số sách ở ngăn thứ hai lúc đầu là: \(400-180=220\) (cuốn sách)
Vậy: ...
\(\left(x+2\right)\left(32-x+3\right)=x\left(32-x\right)+88\)
\(\left(x+2\right)\left(35-x\right)=-x^2+32x+88\)
\(-x^2+33x+70=-x^2+32x+88\)
\(70-88=32x-33x\)
\(x=18;y=14\)
Câu này mình làm đúng rồi nhưng lần sau mình trình bày đặt x, y ra sao, tại sao lại có biểu thức đó và đầu mỗi dòng mình nên có dấu tương đương nhé.
Tổng quát: \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
\(\Rightarrow C=\dfrac{9\left(9+2\right)}{\left(9+1\right)^2}=\dfrac{9.11}{10^2}=\dfrac{99}{100}\)
Vậy \(C=\dfrac{99}{100}\)
+, Chu vi miếng bìa ban đầu là:
$10\times 4=40\text{ }(cm)$
Chu vi phần bìa bị cắt đi là:
$4\times (2\times 4)=32\text{ }(cm)$
Chu vi phần bìa còn lại là:
$40-32=8\text{ } (cm)$
+, Diện tích miếng bìa ban đầu là:
$10\times10=100\text{ }(cm^2)$
Diện tích phần bìa bị cắt đi là:
$4\times(2\times2)=16\text{ }(cm^2)$
Diện tích phần bìa còn lại là:
$100-16=84 \text{ }(cm^2)$
Gọi H,K lần lượt là trung điểm của AD,BC
Xét hình thang ABCD có
H,K lần lượt là trung điểm của AD,BC
=>HK là đường trung bình của hình thang ABCD
=>HK//AB//CD và \(HK=\dfrac{AB+CD}{2}=17\left(cm\right)\)
Xét ΔDAB có
H,M lần lượt là trung điểm của DA,DB
=>HM là đường trung bình của ΔDAB
=>HM//AB và \(HM=\dfrac{AB}{2}=\dfrac{15}{2}=7,5\left(cm\right)\)
Xét ΔCAB có
N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCAB
=>NK//AB và \(NK=\dfrac{AB}{2}=7,5\left(cm\right)\)
Ta có: NK//AB
HK//AB
mà HK,NK có điểm chung là K
nên H,N,K thẳng hàng
Ta có: HM//AB
HK//AB
=>H,M,K thẳng hàng
=>H,M,N,K thẳng hàng
Ta có: HM+MN+NK=HK
=>MN+7,5+7,5=17
=>MN=2(cm)