1+1=? thách ai có thể trả lời đc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường từ HN - HP là \(x\left(km,x>0\right)\)
Thời gian theo dự kiến ô tô đi từ HN - HP là 10h30p - 8h = 2h30p = \(\frac{5}{2}h\)
Vận tốc dự kiến là \(x:\frac{5}{2}=\frac{2}{5}x\)
Vận tốc thực tế là: \(\frac{2}{5}x+15\)km/h
Thời gian thực tế là: \(x:\left(\frac{2}{5}x+15\right)=x:\frac{2x+75}{5}=\frac{5x}{2x+75}\)(h)
Vì thời gian thực tế sớm hơn dự kiến 30p \(=\frac{1}{2}h\)nên ta có pt:
\(\frac{5}{2}-\frac{5x}{2x+75}=\frac{1}{2}\)\(\Leftrightarrow\frac{5x}{2x+75}=2\)\(\Leftrightarrow5x=2\left(2x+75\right)\)\(\Leftrightarrow5x=4x+150\)\(\Leftrightarrow x=150\)(nhận)
Vậy quãng đường từ HN - HP dài 150km
\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)
<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)
=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)
<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)
<=> \(-12x=12\)
<=> \(x=-1\left(TMĐK\right)\)
Vậy: ...
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)
\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow\)\(12=\left(-6x\right).2\)
\(\Leftrightarrow\)\(12=-12x\)
\(\Leftrightarrow\)\(x=-1\)
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)
\(a,\)\(\frac{9}{16}-\frac{3}{8}\)\(=\frac{9}{16}-\frac{6}{16}=\frac{3}{16}\)
\(b,\)\(\frac{5}{9}\times\frac{3}{8}=\frac{5\times3}{3\times3\times8}=\frac{5}{24}\)
\(c,\)\(\frac{5}{6}+\frac{9}{12}\div\frac{18}{5}\)\(=\frac{5}{6}+\frac{9}{12}\times\frac{5}{18}\)\(=\frac{5}{6}+\frac{9\times5}{12\times2\times9}\)\(=\frac{5}{6}+\frac{5}{24}\)\(=\frac{20}{24}+\frac{5}{24}=\frac{25}{24}\)
\(d,\)\(\frac{1}{2}\div\frac{1}{2}\div\frac{1}{2}\)\(=1\div\frac{1}{2}=1\times2=2\)
thì bằng 2 có đúng ko
1 + 1 = 2 nha.