K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

thì bằng 2 có đúng ko

27 tháng 1 2022

1 + 1 = 2 nha.

1 tháng 3 2022

gfvfvfvfvfvfvfv555

27 tháng 1 2022

Gọi quãng đường từ HN - HP là \(x\left(km,x>0\right)\)

Thời gian theo dự kiến ô tô đi từ HN - HP là 10h30p - 8h = 2h30p = \(\frac{5}{2}h\)

Vận tốc dự kiến là \(x:\frac{5}{2}=\frac{2}{5}x\)

Vận tốc thực tế là: \(\frac{2}{5}x+15\)km/h

Thời gian thực tế là: \(x:\left(\frac{2}{5}x+15\right)=x:\frac{2x+75}{5}=\frac{5x}{2x+75}\)(h)

Vì thời gian thực tế sớm hơn dự kiến 30p \(=\frac{1}{2}h\)nên ta có pt:

\(\frac{5}{2}-\frac{5x}{2x+75}=\frac{1}{2}\)\(\Leftrightarrow\frac{5x}{2x+75}=2\)\(\Leftrightarrow5x=2\left(2x+75\right)\)\(\Leftrightarrow5x=4x+150\)\(\Leftrightarrow x=150\)(nhận)

Vậy quãng đường từ HN - HP dài 150km

27 tháng 1 2022

cjhiuj

1 tháng 3 2022

gfvfvfvfvfvfvfv555

27 tháng 1 2022

=10198603.91304348 nhé

27 tháng 1 2022
10198603.913 nha ($$phúc$$)
27 tháng 1 2022

\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)

<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)

=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

<=> \(-12x=12\)

<=> \(x=-1\left(TMĐK\right)\)

Vậy: ...

27 tháng 1 2022

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)

\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow\)\(12=\left(-6x\right).2\)

\(\Leftrightarrow\)\(12=-12x\)

\(\Leftrightarrow\)\(x=-1\)

27 tháng 1 2022

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy

chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*

Áp dụng vào bài toán ta được :

2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)

<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca

Dấu = xảy ra <=>a=b=c

27 tháng 1 2022

\(a^2+b^2\ge ab+bc+ca.\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)

27 tháng 1 2022

\(a,\)\(\frac{9}{16}-\frac{3}{8}\)\(=\frac{9}{16}-\frac{6}{16}=\frac{3}{16}\)

\(b,\)\(\frac{5}{9}\times\frac{3}{8}=\frac{5\times3}{3\times3\times8}=\frac{5}{24}\)

\(c,\)\(\frac{5}{6}+\frac{9}{12}\div\frac{18}{5}\)\(=\frac{5}{6}+\frac{9}{12}\times\frac{5}{18}\)\(=\frac{5}{6}+\frac{9\times5}{12\times2\times9}\)\(=\frac{5}{6}+\frac{5}{24}\)\(=\frac{20}{24}+\frac{5}{24}=\frac{25}{24}\)

\(d,\)\(\frac{1}{2}\div\frac{1}{2}\div\frac{1}{2}\)\(=1\div\frac{1}{2}=1\times2=2\)