K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{5}{2\cdot7}+\dfrac{16}{7\cdot9}-\dfrac{2}{9\cdot11}-\dfrac{29}{1\cdot11}\)

\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{29}{11}\)

\(=\dfrac{1}{2}-\dfrac{28}{11}=\dfrac{11-56}{22}=\dfrac{-45}{22}< \dfrac{1}{3}\)

 

8 tháng 8 2024

 A = (148)2020 + 10 

A =  (148)5.404 + 10

A = (145)8.404 + 10

A = 5378243232 + 10

537824 \(\equiv\) 1 (mod 11)

5378243232 \(\equiv\) 13232 (mod 11) \(\equiv\) 1 (mod 11)

10 \(\equiv\) 10 (mod 11)

⇒ 5378243232 + 10  \(\equiv\) 1 + 10 (mod 11)

⇒5378243232 + 10 \(\equiv\) 11 (mod 11) \(\equiv\) 0 (mod 11)

⇒ A = (148)2020 + 10 \(⋮\) 11 (đpcm)

 

 

 

  

 

NV
8 tháng 8 2024

\(14\equiv3\left(mod11\right)\Rightarrow\left(14^8\right)^{2020}\equiv\left(3^8\right)^{2020}\left(mod11\right)\)

\(\left(3^8\right)^{2020}=3^{8.404.5}=\left(3^5\right)^{3232}=\left(243\right)^{3232}\)

\(243\equiv1\left(mod11\right)\Rightarrow243^{3232}\equiv1\left(mod11\right)\)

\(\Rightarrow\left(14^8\right)^{2020}\equiv1\left(mod11\right)\)

\(\Rightarrow\left(14^8\right)^{2020}+10⋮11\)

NV
6 tháng 8 2024

Đặt \(P=-x^2+4xy-5y^2-2x+4y-5\)

\(=-\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-1-y^2-4\)

\(=-\left(x-2y\right)^2-2\left(x-2y\right)-1-y^2-4\)

\(=-\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]-y^2-4\)

\(=-\left(x-2y+1\right)^2-y^2-4\)

Do \(\left\{{}\begin{matrix}-\left(x-2y+1\right)^2\le0\\-y^2\le0\\-4< 0\end{matrix}\right.\) ; \(\forall x;y\)

\(\Rightarrow-\left(x-2y+1\right)^2-y^2-4< 0;\forall x;y\)

Vậy P luôn âm

6 tháng 8 2024

Số đối của \(\dfrac{2}{3}\) là: 0 - \(\dfrac{2}{3}\) = - \(\dfrac{2}{3}\)

Số đối của - \(\dfrac{5}{6}\) là: 0 - (- \(\dfrac{5}{6}\)) = \(\dfrac{5}{6}\)

Số đối của 0 là 0 - 0 = 0

Số đối của -3 là 0 - (-3) = 3 

Số đối của 14 là 0 - 14 = - 14

F={1;3;6;...;4950}

=>\(F=\left\{\dfrac{1\cdot2}{2};\dfrac{2\cdot3}{2};\dfrac{3\cdot4}{2};...;\dfrac{99\cdot100}{2}\right\}\)

=>F có 99 phần tử

6 tháng 8 2024

Ta có: 

`1 + 2 = 3 (`Số thứ `2)`

`1+2+3 = 6 (`Số thứ `3)`

`1+2+3+4 = 10 (Số thứ `4) `

....

`1+2+3+4+...+x = 4950` (Số thứ `x)`

`=> x/2 . (x+1) = 4950`

`=> x(x+1) = 9900`

Mà `9900 = 99 . 100`

`=> x = 99`

Vậy tập hợp F có 99 phần tử

Gọi hai số là a,b

Tỉ lệ giữa hai số ban đầu là 2/5 nên \(\dfrac{a}{b}=\dfrac{2}{5}\)

=>b=2,5a

Nếu thêm 12 đơn vị vào số thứ nhất và bớt 12 đơn vị ở số thứ hai thì hai số mới có tỉ lệ là \(\dfrac{4}{3}\) nên ta có:

\(\dfrac{a+12}{b-12}=\dfrac{4}{3}\)

=>\(\dfrac{a+12}{2,5a-12}=\dfrac{4}{3}\)

=>10a-48=3a+36

=>7a=84

=>a=12

=>b=2,5a=30

vậy: Hai số cần tìm là 12;30

6 tháng 8 2024

`a^3 + b^3 + c^3 = 3abc`

`=> a^3 + b^3 + c^3 - 3abc = 0`

`=> (a+b)^3 - 3ab(a+b) + c^3 - 3abc = 0`

`=> ((a+b)^3  + c^3) - (3ab(a+b) + 3abc) = 0`

`=> (a+b+c) ((a+b)^2 - (a+b)c + c^2) - 3ab(a+b+c) = 0`

`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2) - 3ab(a+b+c) = 0`

`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2 - 3ab) = 0`

`=> (a+b+c)(a^2 - ab + b^2 - ac - bc + c^2) = 0`

Trường hợp 1: 

`a+b+c = 0 (đpcm)`

Trường hợp 2: 

`a^2 - ab + b^2 + ac + bc + c^2 = 0`

`<=> 2a^2 - 2ab + 2b^2 - 2bc +2c^2 - 2ca = 0`

`<=> a^2 - 2ab + b^2 + b^2 - 2bc +c^2 + c^2 - 2ac + a^2 = 0`

`<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0`

Do `{((a-b)^2 >=0),((b-c)^2 >=0),((c-a)^2 >=0):}`

`=> (a-b)^2 + (b-c)^2 + (c-a)^2 >= 0`

Dấu = có khi: 

`{(a=b),(b=c),(c=a):}`

Hay `a=b=c  (đpcm)`

6 tháng 8 2024

Ta có :a^3+b^3+c^3=3abc⇒a^3+b^3+c^3-3abc=0

⇒(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0

TH1: a+b+c=0

TH2:a^2+b^2+c^2-ab-ac-bc=0

⇒2a^2+2b^2+2c^2-2ab-2bc-2ac=0

(a-b)^2+(b-c)^2+(c-a)^2=0

⇒a=b=c

6 tháng 8 2024

eget4t

a: Số hạng chưa biết là:

684-209=475

b: loading...

loading...

loading...

loading...

loading...

loading...

6 tháng 8 2024

2435678