K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 3 2022

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}\right)\div\left(\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)     (\(x>0,x\ne9,x\ne25\))

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\div\left[\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(=\frac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)

\(=\frac{-x}{5-\sqrt{x}}\)

DD
29 tháng 3 2022

\(A=\frac{x+2}{x-\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\frac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{1}{\sqrt{x}-2}\)

Khi \(x=25\)\(B=\frac{1}{\sqrt{25}-2}=\frac{1}{5-2}=\frac{1}{3}\)

\(P=A\div B=\frac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\div\frac{1}{\sqrt{x}-2}=\frac{4\sqrt{x}+1}{\sqrt{x}+1}\)

\(P^2=P+2\Leftrightarrow P^2-P-2=0\Leftrightarrow\left(P-2\right)\left(P+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}P=2\\P=-1\end{cases}}\)

\(P=2\)\(\frac{4\sqrt{x}+1}{\sqrt{x}+1}=2\Leftrightarrow4\sqrt{x}+1=2\sqrt{x}+2\Leftrightarrow x=\frac{1}{4}\)(tm) 

\(P=-1\)\(\frac{4\sqrt{x}+1}{\sqrt{x}+1}=-1\Leftrightarrow4\sqrt{x}+1=-\sqrt{x}-1\Leftrightarrow\sqrt{x}=-\frac{2}{5}\)(vô nghiệm) 

Tham khảo

Vào những năm 1760, Johann Heinrich Lambert đã chứng minh rằng số π (pi) là vô tỷ: nghĩa là nó không thể được biểu thị dưới dạng phân số a/b, trong đó a là số nguyên và b là số nguyên khác không. Vào thế kỷ 19, Charles Hermite đã tìm thấy một chứng minh không đòi hỏi kiến thức tiên quyết nào ngoài vi tích phân cơ bản.

#zinc

28 tháng 3 2022

có ạ

================

28 tháng 3 2022

Ta có (ab + bc + ca)2 = (ab)2 + (bc2) + (ca)2 + 2abc(a + b + c)

Lại có : x2 +y2 + z2 \(\ge\)xy + yz + xz

Thật vậy  x2 +y2 + z2 \(\ge\)xy + yz + xz

<=> 2(x2 +y2 + z2\(\ge\)2(xy + yz + xz)

<=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (z2 - 2zx + x2\(\ge0\)

<=> (x - y)2 + (z - x)2 + (y - z)2 \(\ge0\) (đúng) => ĐPCM

Áp dụng bài toán => (ab)2 + (bc)2 + (ca)2 \(\ge\)ab.bc + ac.bc + ab.ac = abc(a + b + c) 

Khi đó (ab + bc + ca)2 = (ab)2 + (bc2) + (ca)2 + 2abc(a + b + c) \(\ge\)abc(a + b + c) + 2abc(a + b + c) = 3abc(a + b + c) (đpcm) 

28 tháng 3 2022

Bạn vào thống kê hỏi đáp của mình xem nhé.

AH
Akai Haruma
Giáo viên
28 tháng 3 2022

Lời giải:
a. $\Delta'=m^2-(m^2-2)=2>0$ nên pt luôn có 2 nghiệm pb với mọi $m\in\mathbb{R}$

Áp dụng định lý Viet:

$x_1+x_2=-m$

$x_1x_2=\frac{m^2-2}{2}$

$\Rightarrow (x_1+x_2)^2=m^2=2x_1x_2+2$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2$

$\Leftrightarrow x_1^2+x_2^2=2$ 

Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$

b.

\(A=\frac{2x_1x_2+3}{2+2x_1x_2+1}=\frac{2x_1x_2+3}{2x_1x_2+3}=1\) nên không có có min, max.

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)

28 tháng 3 2022

 có nhiều quan hệ với các nước thuộc tiểu vùng sông Mê Công,

gần với vùng kinh tế năng động Đông Nam bộ nên

thuận lợi cho giao lưu trên đất liền và biển với các vùng và các nước.]