1234555+1234678888=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(5^x+12^x=y^2\)
Ta có: \(y^2\equiv5^x+12^x\left(mod3\right)\equiv5^x\left(mod3\right)\equiv\left(-1\right)^x\left(mod3\right)\)
mà ta có số chính phương khi chia cho \(3\)chỉ dư \(0\)hoặc \(1\).
Suy ra \(x\)là số chẵn.
Đặt \(x=2k,k\inℕ\).
Ta có: \(5^{2k}+12^{2k}=y^2\)
\(\Leftrightarrow y^2-12^{2k}=5^{2k}\)
\(\Leftrightarrow\left(y-12^k\right)\left(y+12^k\right)=5^{2k}\)
Suy ra \(\hept{\begin{cases}y-12^k=5^m\\y+12^k=5^n\end{cases}}\)với \(m+n=2k,m< n\).
suy ra \(2.12^k=5^n-5^m=5^m\left(5^{n-m}-1\right)\)
Ta có: \(2.12^k⋮̸5\Rightarrow5^m\left(5^{n-m}-1\right)⋮̸5\Rightarrow m=0\)
\(2.12^k=5^n-1=5^{2k}-1=25^k-1\)
Với \(k=0\): \(2.12^k=2,25^k-1=-1\)không thỏa mãn.
Với \(k=1\): \(2.12^k=2.12=24,25^k-1=25-1=24\)thỏa mãn.
suy ra \(x=2\).
Với \(k\ge2\): \(25^k-1>24^k-1>24^k=\left(2.12\right)^k>2.12^k\)
Vậy \(2\)là giá trị duy nhất của \(x\)thỏa mãn ycbt.
1235913443
k mik nha