chứng minh ( 2x + 3y) chia hết cho 17 biết ( 9x + 5y) chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10-3n chia hết cho n-2
=> -3(n-2)+4 chia hết cho n-2
=> 4 chia hết cho n-2
=> n-2 thuộc Ư(4)={±1;±2;±4}
=> n thuộc {3;1;4;0;6;-2}
10-3n chia hết cho n-2
=> -3(n-2)+4 chia hết cho n-2
=> 4 chia hết cho n-2
=> n-2 thuộc Ư(4)={±1;±2;±4}
=> n thuộc {3;1;4;0;6;-2}
40 + ( 139 - 172 + 99 ) - ( 139 + 199 - 127 )
= 40 + 139 + 172 + 99 - 139 - 199 +127
= ( 139 - 139 ) + ( 99 - 199 ) + ( 127 - 172 + 40 )
= 0 -100 - 5
= -105
\(\left(-4\right)^2.\left(-3\right)-\left[\left(-93\right)+\left(-11+8\right)^3\right]\)
\(=16.\left(-3\right)-\left[\left(-93\right)+\left(-3\right)^3\right]\)
\(=16.\left(-3\right)-\left[\left(-93\right)+-27\right]\)
\(=16.\left(-3\right)-\left(-120\right)\)
\(=-48+120=72\)
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+ 2022+2023 =(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+2022+2023
=(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
\(S=\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{98.100}\)
\(S=\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{98}-\dfrac{1}{100}\)
\(S=\dfrac{1}{10}-\dfrac{1}{100}< \dfrac{1}{10}\) (đpcm)
a; \(\dfrac{-1}{8}\) + \(\dfrac{-5}{3}\)
= \(\dfrac{-3}{24}\) + \(\dfrac{-40}{24}\)
= \(\dfrac{-43}{24}\)
b; \(\dfrac{-5}{21}\) + \(\dfrac{-2}{21}\) + \(\dfrac{8}{24}\)
= -(\(\dfrac{5}{21}\) + \(\dfrac{2}{21}\)) + \(\dfrac{1}{3}\)
= - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\)
= 0
c; 0,25 + \(\dfrac{5}{6}\) - \(\dfrac{2}{3}\)
= \(\dfrac{1}{4}\) + \(\dfrac{5}{6}\) - \(\dfrac{2}{3}\)
= \(\dfrac{3}{12}\) + \(\dfrac{10}{12}\) - \(\dfrac{8}{12}\)
= \(\dfrac{5}{12}\)
d; \(\dfrac{2}{3}\) - \(\dfrac{5}{7}\).\(\dfrac{14}{25}\)
= \(\dfrac{2}{3}\) - \(\dfrac{2}{5}\)
= \(\dfrac{4}{15}\)
e; \(\dfrac{-2}{5}\).\(\dfrac{5}{8}\) + \(\dfrac{5}{8}\).\(\dfrac{3}{5}\)
= \(\dfrac{5}{8}\).(\(-\dfrac{2}{5}\) + \(\dfrac{3}{5}\))
= \(\dfrac{5}{8}\).\(\dfrac{1}{5}\)
= \(\dfrac{1}{8}\)
d; \(\dfrac{6}{7}\).\(\dfrac{8}{13}\) + \(\dfrac{6}{13}\).\(\dfrac{9}{7}\) - \(\dfrac{4}{13}\).\(\dfrac{6}{7}\)
= \(\dfrac{6}{7}\).(\(\dfrac{8}{13}\) + \(\dfrac{9}{13}\) - \(\dfrac{4}{13}\))
= \(\dfrac{6}{7}\).\(\dfrac{13}{13}\)
= \(\dfrac{6}{7}\)
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n
(9x + 5y) ⋮ 17
⇒ 4(9x + 5y) ⋮ 17
⇒(36x + 20y) ⋮ 17
⇒ (36x + 20y - 34x - 17y) ⋮ 17
⇒ (2x + 3y) ⋮ 17