K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

?o?n th?ng c: ?o?n th?ng [A, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [B, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng n: ?o?n th?ng [B, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [A, N] ?o?n th?ng r: ?o?n th?ng [B, N] ?o?n th?ng s: ?o?n th?ng [C, Q] ?o?n th?ng t: ?o?n th?ng [A, Q] ?o?n th?ng d: ?o?n th?ng [A, P] ?o?n th?ng e: ?o?n th?ng [C, P] ?o?n th?ng f_1: ?o?n th?ng [N, Q] A = (0.19, 4.72) A = (0.19, 4.72) A = (0.19, 4.72) B = (-1.7, 0.64) B = (-1.7, 0.64) B = (-1.7, 0.64) C = (5.14, 0.68) C = (5.14, 0.68) C = (5.14, 0.68) ?i?m M: Giao ?i?m c?a g, j ?i?m M: Giao ?i?m c?a g, j ?i?m M: Giao ?i?m c?a g, j ?i?m N: Giao ?i?m c?a f, k ?i?m N: Giao ?i?m c?a f, k ?i?m N: Giao ?i?m c?a f, k ?i?m P: Giao ?i?m c?a i, l ?i?m P: Giao ?i?m c?a i, l ?i?m P: Giao ?i?m c?a i, l ?i?m Q: Giao ?i?m c?a h, m ?i?m Q: Giao ?i?m c?a h, m ?i?m Q: Giao ?i?m c?a h, m ?i?m E: Trung ?i?m c?a c ?i?m E: Trung ?i?m c?a c ?i?m E: Trung ?i?m c?a c ?i?m F: Trung ?i?m c?a b ?i?m F: Trung ?i?m c?a b ?i?m F: Trung ?i?m c?a b

a. Do hai đường phân giác trong và ngoài của góc B vuông góc với nhau nên AMBN là hình chữ nhật (Tứ giác có 3 góc vuông)

Tương tự ACPQ cũng là hình chữ nhật.

b. Do câu a, AMBN là hình chữ nhật nên MN và BA cắt nhau tại trung điểm mỗi đường. Vì thế M, N, E thẳng hàng. Tương tự P, F,Q thẳng hàng.

Do BM là phân giác góc B nên \(\widehat{MBC}=\widehat{PMB}\left(=\widehat{EBM}\right)\). Vậy EM // BC. Dễ thấy EF // BC nên E, M, F thẳng hàng.

Tương tự Q, P ,E thẳng hàng. 

Vậy M, N, P, Q, E, F thẳng hàng.

19 tháng 10 2016

\(a,2x^2+3x+1\)

\(=2x^2+2x+x+1\)

\(=\left(2x^2+2x\right)+\left(x+1\right)\)

\(=2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+1\right)\)

\(b,2x^2+6x+3\)

\(=2x^2+2x+3x+3\)

\(=2x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+3\right)\)

19 tháng 10 2016

Phân tích thành nhân tử :

a, 2x+ 3x + 1

=2x2 + 2x + x + 1

=( 2x2 + 2x ) + ( x + 1 )

=2x ( x + 1 ) + ( x + 1 )

=( x + 1 ) ( 2x + 1 )

b, 

22 tháng 10 2016

Có phải đề như thế này không bạn

\(x^3+3xy+y^3-1\)

\(=\left(x+y\right)^3-1+3xy-3xy\left(x+y\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

19 tháng 10 2016

đề này sai phân tích kiểu mồ

12 tháng 8 2020

Bất đẳng thức sai với [a = 35/256, b = 5/16, c = 3921/1840 ]

18 tháng 10 2016

Có sai đề không bạn

18 tháng 10 2016

Trước hết bạn chứng minh :  \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\) (Chứng minh bằng biến đổi tương đương)

Áp dụng BĐT AM-GM ta có : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{9}{6-\left(a+b+c\right)}\ge\frac{9}{6-\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{9}{6-3}=3\)

18 tháng 10 2016

Dễ thấy \(0< a,b,c< 2\)

Ta có:

\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\Leftrightarrow a\left(a-1\right)^2\ge0\)

Tương tự với các cái tương tự, ta được:

\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\)(Đpcm)

Dấu = khi a=b=c=1

18 tháng 10 2016

ngu ngưoi viet cai de cung sai

19 tháng 9 2019

Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)

Dấu "="\(\Leftrightarrow x=1,y=2\)

19 tháng 10 2016

Ta có \(\frac{n\left(2n-1\right)}{26}=k^2\Leftrightarrow2n^2-n-26k^2=0\)

\(\Delta=208k^2+1=t^2\)(vì n nguyên dương)

\(\Rightarrow\left(t+4\sqrt{13}k\right)\left(t-4\sqrt{13}k\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}t+4\sqrt{13}k=1\\t-4\sqrt{13}k=1\end{cases}\Leftrightarrow\hept{\begin{cases}k=0\\t=1\end{cases}}}\)

Thế vào tìm được \(\orbr{\begin{cases}n=0\\n=\frac{1}{2}\end{cases}}\)

Vậy không có giá trị n nguyên dương nào thỏa mãn cái đó

14 tháng 6 2018

\(\frac{n\left(2n-1\right)}{26}\text{ là SCP }\Leftrightarrow n\left(2n-1\right)=26k^2\)

\(\Delta_n=208k^2+1=y^2\Leftrightarrow y^2-208k^2=1\underrightarrow{\text{PELL}}\)

\(k=\pm\frac{\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m}{8\sqrt{13}}\)

\(n=\frac{1}{8}\left[-\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m+2\right]\left(m\inℤ,m\ge0\right)\)

14 tháng 7 2017

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath