một vận động viên xe đạp đi đc quãng đường 140km từ thành phố Hồ Chí Minh đến Vĩnh Long với vận tốc 35km/h. Hãy vẽ đồ thị của chuyển động trên trong hệ trục tọa độ Oxy (với một đơn vị trên trục hoành biểu thị 1 giờ và một đơn vị trên trục tung biểu thị hai mươi km)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\left(\frac{1}{2}\right)^0+\left(\frac{1}{2}\right)^1+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{10}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\)
=> \(2A=2+1+\frac{1}{2}+....+\frac{1}{2^9}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
=> \(A=2-\frac{1}{2^{10}}\)
a)ta có \(\Delta\)ABC cân tại A(AB=AC)
mà AH là đường trung tuyến(H là trung điểm BC)
nên AH là đường cao,đường phân giác,đường trung trực
xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH(ah là đường cao) có:
AB=AC(gt)
AH là cạnh chung
nên \(\Delta\)ABH=\(\Delta\)ACH
b)xét \(\Delta\)vuông AHE và \(\Delta\)vuông AHF có
AH là cạnh chung
góc EAH=góc FAH(AH là đường phân giác)
nên \(\Delta\)AHE=\(\Delta\)AHF
c)xét \(\Delta\)AEN và \(\Delta\)AFM có
AE=AF(\(\Delta\)AHE=\(\Delta\)AHF)
góc EAH=góc FAH(AH là đường phân giác)
góc NEA=góc MFA(\(\Delta\)AHE=\(\Delta\)AHF)
nên \(\Delta\)AEN=\(\Delta\)AFM
nên AM=AN
mà AE=AF
nên ME=NF(chứng minh xong)
xét \(\Delta\)MEN và \(\Delta\)MFN có
ME=NF
EF là cạnh chung
góc FME=góc ENF(\(\Delta\)AEN=\(\Delta\)AFM)
nên \(\Delta\)MEN=\(\Delta\)MFN
nên MF=NE
d)ta có \(\Delta\)AMN cân tại A(AM=AN)
nên góc AMN=góc ANM
mà góc AEN=góc AFM(\(\Delta\)AEN=\(\Delta\)AFM)
nên góc ENM=góc FMN
nên 2 góc HMN=góc ENM+góc FMN
ta có \(\Delta\)HEF cân tại H(HE=HF)
nên góc HEF=góc HFE=2 góc HFE
ta có 2 góc HEF+góc EHF=2 góc HMN+góc MHN=180 độ
mà góc EHF=góc MHN(đối đỉnh)
nên 2 góc HMN=2 góc HEF
nên góc HMN=góc HEF
mà 2 góc này ở vị trí slt
nên EF//MN
nhân từng hạng tử của giả thiết với 2 rồi cộng và trừ từng cái một là ra còn gì nx
Trình bày dài lắm
Ta có : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
=> \(\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a}{x+2y+z}\)(1)
=> \(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a+4b+c}{z}=\frac{b}{2x+y-z}\)(2)
=> \(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{c}{4x-4y+z}\)(3)
Từ (1);(2);(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4b+z}\)
\(\text{Ta có : }\hept{\begin{cases}5>\sqrt{24}\left(\sqrt{25}>\sqrt{24}\right)\\\sqrt{27}>\sqrt{26}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow5+\sqrt{27}>\sqrt{24}+\sqrt{26}\)
\(\text{Vậy }\)\(5+\sqrt{27}>\sqrt{24}+\sqrt{26}\)
Vì 5=căn 25>căn 24
căn 27>căn 26
=>5+ căn 27>căn 24+ căn 26
\(45+x=\sqrt{72}\)
\(\Rightarrow45+x=\sqrt{36\times2}\)
\(\Rightarrow45+x=\sqrt{36}\times\sqrt{2}\)
\(\Rightarrow45+x=6\sqrt{2}\)
\(\Rightarrow x=6\sqrt{2}-45\)