K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

\(2^{2n+1}=2\left(4^n\right)=2\left(3+1\right)^n=2\left(BS3+1\right)=BS3+2=3k+2\)

=>\(2^{2^{2n+1}}+3=2^{3k+2}+3=4\left(8\right)^k+3=4\left(7+1\right)^k+3=4\left(BS7+1\right)+3=BS7+7\)

chia hết cho 7

=> \(A\notin P\)

7 tháng 11 2016

Thiếu

K\(\ge1\)

8 tháng 11 2016

Gọi số thỏa đề bài là \(\frac{x}{7}\)ta có

a < \(\frac{x}{7}\)< b \(\Leftrightarrow7a< x< 7b\)

Vây x \(\in\)(7a + 1 đến 7b - 1)

Tổng các số đó là

\(\frac{7a+1}{7}+\frac{7a+2}{7}+...+\frac{7b-1}{7}\)

\(=\frac{1}{7}\left(7a+1+...+7b-1\right)\)

\(=\frac{1}{7}\times\frac{\left(7b-7a-1\right)\left(7a+7b\right)}{2}\)

Bạn làm tiếp nhé

7 tháng 11 2016

Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK

6 tháng 11 2016

P=5050

6 tháng 11 2016

Xét tam giác ABC vuông tại A có:

AB2+AC2=BC2

BC2=32+42=25

=>BC=5(CM)

Vì M; N là trung điểm của AB,AC nên MN là đường trung bình của tam giác ABC

=>MN=1/2BC=1/2*5=2,5(cm)

6 tháng 11 2016

(x+y)=1 => (x+y)2=1

x2+2xy+y2=1

mà x2+y2=25

nên 25+2xy=1

2xy=-24

xy=-12

6 tháng 11 2016

(x+3)2=x2+2*3*x+32=x2+6x+32

m=6

6 tháng 11 2016

(x+3)(x2-3x+32)-54=0

x3+33-54=0

x3-27=0

x3=27=33

=>x=3

Vậy x=3

6 tháng 11 2016

Theo đầu bài ta có:
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{\left(1+x\right)+\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{\left(2+2x^2\right)+\left(2-2x^2\right)}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{\left(4+4x^4\right)+\left(4-4x^4\right)}{1-x^8}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{1}{1+x^{16}}\)
\(=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{1}{1+x^{16}}\)
\(=\frac{\left(8+8x^8\right)+\left(8-8x^8\right)}{1-x^{16}}+\frac{1}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{1}{1+x^{16}}\)
\(=\frac{16\left(1+x^{16}\right)+\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{\left(16+16x^{16}\right)+\left(1-x^{16}\right)}{1-x^{32}}\)
\(=\frac{17+15x^{16}}{1-x^{32}}\)