Tìm GTNN của \(A=2x+3y\) biết \(2x^2+3y^2\le5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Holder, ta có:
\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)
<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)
Vì a+b=3
=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Dấu "=" xảy ra khi: a=b=1
=>ĐPCM
Ta có
\(n^n-n^2+n-1\)
= (n n - 1) + (- n2 + n)
= (n - 1)(n n-1 + n n-2 +...+ n + 1) - n(n - 1)
= (n - 1)(n n-1 + n n-2 +...+ n2 + 1)
= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 2 + 1]
= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 1]
= (n - 1)2 A(n) (biểu diễn vậy cho gọn nha)
Vậy \(n^n-n^2+n-1\)chia hết cho (n - 1)2
Câu hỏi của Ruxian - Toán lớp 7 - Học toán với OnlineMath
Ta thực hiện phép chia :
x - 5x + a x - 3x + 2 4 2 2 x 2 x-3x+2x 4 3x -7x 3 3 2 2 +3x 3x -9x +6x - - 3 2 2x -6x +a +2 2 2x -6x +4 2 a - 4 -
Vậy để đây là phép chia hết thì a - 4 = 0 hay a = 4.
Dùng hằng đẳng thức đáng nhớ thôi b
Ta có y2 - x2 = (y - x)(y + x)
Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được
Dùng hình bạn Ngọc nhé
Gọi K là giao điểm của MP và NQ
Kẽ MH, QE lần lược vuông góc với DC, BC tại H,E. I, F là giao điểm của QE với MP và MH
Ta có QE //DC
=> MIQ = MPH (góc đồng vị)
MIQ = QNE ( + NQE = 90)
=> MPH = QNE (1)
Xét tam giác QNE và tam giác MPH có
Góc MPH = góc QNE
Góc MHP = góc QEN = 90
MH = QE (cùng bằng cạnh hình vuông)
=> Tam giác QNE = tam giác MPH
=> NQ = PM
Ta có
\(1A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)
\(\le5.5=25\)
\(\Rightarrow-5\le A\le5\)
Vậy GTNN là - 5 đạt được khi x = y = - 1
tuong Min=5 chu