cho tam giác ABC có AB=6cm , AB=8cm , BC=10cm ; đường cao AH gọi D,E thứ tự là hình chiếu của H trên AB và AC . Chúng minh : tam ABC vuông tại A . Tính góc B , góc C ? . Chứng minh tam giác ADE đồng dạng tam giác ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề : \(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)đk : x > 0
\(VT=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}=VP\)
Vậy ta có đpcm
chứng minh gì đọc kĩ khi đăt câu hỏi nha
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
báo cáo sai phạm vì chỉ ghi ''chững minh'' để quấy rối ng khác,cho 1M vé pay acc nhá OK
\(AB=\frac{3}{4}AC\)nên \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{15^2}{25}=9\)
\(\Rightarrow\hept{\begin{cases}\frac{AB^2}{9}=9\Rightarrow AB=9\left(cm\right)\\\frac{AC^2}{16}=9\Rightarrow AC=12\left(cm\right)\end{cases}}\)
\(\Delta ABC\)vuông tại A có đường cao AH nên
\(AH.BC=AB.AC\)(hệ thức lượng trong tam giác vuông)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=\frac{36}{5}\left(cm\right)\)
a, BC=BH+HC=8BC=BH+HC=8
Áp dụng HTL:
⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)
b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)
Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tanAKB^=ABAK=423=233≈tan490
⇒ˆAKB≈490