(x+5)(7+X)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-23).35 + 35.(-37) + 65.(-60)
= 35.(-23-37) + 65.(-60)
= 35.(-60) + 65.(-60)
= (-60).(35 + 65)
= (-60).100
= -6000
Ta có: \(\left(3x-6\right)\left(5-x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left(3x-6\right)\left(5-x\right)>0\\\left(3x-6\right)\left(5-x\right)=0\end{matrix}\right.\)
+, Trường hợp 1: \(\left(3x-6\right)\left(5-x\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-6>0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-6< 0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x>6\\5>x\end{matrix}\right.\\\left\{{}\begin{matrix}3x< 6\\5< x\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>5\end{matrix}\right.\left(\text{vô lí}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\Leftrightarrow2< x< 5\)
+, Trường hợp 2: \(\left(3x-6\right)\left(5-x\right)=0\Leftrightarrow\left[{}\begin{matrix}3x-6=0\\5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy biểu thức \(\left(3x-6\right)\left(5-x\right)\) lớn hơn 0 khi \(2< x< 5\) và bằng 0 khi \(x\in\left\{2;5\right\}\).
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
a.
Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ
TH1: p chẵn và q lẻ \(\Rightarrow p=2\)
Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố
- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)
- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)
Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)
Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)
TH2: p lẻ và q chẵn \(\Rightarrow q=2\)
Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố
- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)
- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)
Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)
Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)
Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu
b.
x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)
Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)
\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)
Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên
\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên
\(\Rightarrow x+4=Ư\left(32\right)\)
Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)
\(\Rightarrow x=\left\{0;4;12;28\right\}\)
Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)
- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)
- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)
- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)
Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)
Lời giải:
$24:27=-16:x$
$-16:x=\frac{8}{9}$
$x=-16: \frac{8}{9}=\frac{-16\times 9}{8}=-18$
Ta có:
24 : 27 = - 16 : x
- 16 : x = 24 : 27
- 16 : x = 24/ 27
- 16/ x = 24/ 27
- 16/ x = 8/ 9
- 16/ x = 16/ 18
=> x = 18
\(\left(x+5\right)\left(7+x\right)=0\)
TH1: \(x+5=0\)
\(\Rightarrow x=-5\)
TH2: \(7+x=0\)
\(\Rightarrow x=-7\)
Vậy: \(x\in\left\{-5;-7\right\}\)
\(\left(x+5\right).\left(7+x\right)=0\)
\(\left(1\right):x+5=0\)
\(x=0-5\Rightarrow x=-5.\)
\(\left(2\right):7+x=0\)
\(x=0-7\Rightarrow x=-7\)
Từ \(\left(1\right)\) và \(\left(2\right)\):
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\x=-7\end{matrix}\right.\)