cho nửa đường tròn tâm O đường kính AB và một điểm C nằm giữa A và B ( AC < AB). Lấy điểm M bất kì trên nửa đường tròn ( M khác A và B). Trên cùng một nửa mặt phẳng bờ AB có chứa M, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Đường thẳng qua M vuông góc với MC cắt tia Ax tại P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge-3;x^2+9x+19\ge0\)
Phương trình tương đương
\(2\sqrt{x+3}=\sqrt{x^2+9x+19}-\left(x+4\right)\)
\(\Leftrightarrow2\sqrt{x+3}=\dfrac{x+3}{\sqrt{x^2+9x+19}+x+4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\dfrac{\sqrt{x+3}}{\sqrt{x^2+9x+19}+x+4}=2\left(1\right)\end{matrix}\right.\)
Giải (1) ta có : \(2\sqrt{x^2+9x+9}=-2x-8+\sqrt{x+3}\)
Đặt t = \(\sqrt{x+3}\) có VP = f(t) = -2t2 + t - 2 \(\le-\dfrac{15}{8}\)< 0 (2)
Dấu "=" khi \(x=\dfrac{1}{4}\)
Lại có VP \(\ge0\) (3)
Từ (2) (3) được (1) vô nghiệm
=> Nghiệm phương trình ban đầu là nghiệm của x + 3 = 0
<=> x = -3 (TM)
Tập nghiệm S = {-3}
b,
Mình không giải nhưng chắc chắn đây là hệ quả của BĐT Schur.
Từ 2x - y - 2 = 0
ta được y = 2x - 2
Thế vào phương trình dưới ta được
3x2 - x(2x - 2) - 8 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2)(x + 4) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với x = 2 được y = 2
Với x = -4 được y = - 10
Vậy (x;y) = (2;2) ; (-4 ; -10)
a)Có: \(\Delta=\left(-m\right)^2-4\left(m-5\right)=m^2-4m+20=\left(m-2\right)^2+16>0\)
=> Phương trình (1) có 2 nghiệm phân biệt \(\forall m\)
b) Áp dụng hệ thức Viete :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-5\end{matrix}\right.\)
Kết hợp giả thiết : \(x_1+2x_2=1\)
ta được \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1+2x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=1-m\\x_1=2m-1\end{matrix}\right.\)
Khi đó \(x_1x_2=m-5\)
\(\Leftrightarrow\left(1-m\right).\left(2m-1\right)=m-5\)
\(\Leftrightarrow2m^2-2m-4=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
Vậy m \(\in\left\{-1;2\right\}\)
Ta có: VT =82−32−41−2=1−282−32−4
=82−2.42−41−2=82−42−41−2=1−282−2.42−4=1−282−42−4
=42−41−2=−4(1−2)1−2=−4==1−242−4=1−2−4(1−2)=−4= V P
Vậy 82−32−41−2=−41−282−32−4=−4
b) ĐKXĐ: {�≥0�+2≠0�−2≠0�−4≠0⇔{�≥0�≠2�≠4⇔{�≥0�≠4⎩⎨⎧x≥0x+2=0x−2=0x−4=0⇔⎩⎨⎧x≥0x=2x=4⇔{x≥0x=4.
Vậy ĐKXĐ của �P là �≥0x≥0, �≠4x=4.
Với �≥0x≥0, �≠4x=4 ta có:
�=(2�+2−1�−2+7�−4).(�−1)P=(x+22−x−21+x−47).(x−1)
=(2�+2−1�−2+7(�−2)(�+2)).(�−1)=(x+22−x−21+(x−2)(x+2)7).(x−1)
=(2(�−2)−(�+2)+7(�−2)(�+2)).(�−1)=((x−2)(x+2)2(x−2)−(x+2)+7).(x−1)
=2�−4−�−2+7(�−2)(�+2).(�−1)=(x−2)(x+2)2x−4−x−2+7.(x−1)
=�+1(�−2)(�+2).(�−1)=(x−2)(x+2)x+1.(x−1)
=�−1�−4=x−4x−1.
Vậy �=�−1�−4P=x−4x−1 với �≥0x≥0, �≠4x=4.
ĐKXĐ: \(x\ne0\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}+3>0\\\dfrac{1}{x}-3< 0\Rightarrow\left(\dfrac{1}{x}-3\right)\left(\sqrt{9x^2-6x+2}+3\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm
- Với \(x\ge\dfrac{1}{3}\) tương tự ta có \(\dfrac{1}{x}-3\le0\Rightarrow\left\{{}\begin{matrix}VT>0\\VT\le0\end{matrix}\right.\) nên pt vô nghiệm
- Với \(0< x< \dfrac{1}{3}\)
\(\Rightarrow x\sqrt{x^2+1}+3x=\left(1-3x\right)\left(\sqrt{\left(1-3x\right)^2+1}+3\right)\)
Đặt \(1-3x=y>0\)
\(\Rightarrow x\sqrt{x^2+1}+3x=y\left(\sqrt{y^2+1}+3\right)\)
\(\Leftrightarrow x\sqrt{x^2+1}-y\sqrt{y^2+1}+3\left(x-y\right)=0\)
\(\Leftrightarrow\dfrac{x^2\left(x^2+1\right)-y^2\left(y^2+1\right)}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\left(x+y\right)\left(x^2+y^2\right)+x+y}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3\right)=0\) (1)
Do \(\dfrac{\left(x+y\right)\left(x^2+y^2\right)+x+y}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3>0;\forall x;y>0\)
\(\left(1\right)\Leftrightarrow x-y=0\Leftrightarrow x-\left(1-3x\right)=0\)
\(\Rightarrow x=\dfrac{1}{4}\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-1\end{matrix}\right.\)
\(T=\dfrac{3\left|x_1-x_2\right|}{x_1^2x_2+x_1x_2^2}=\dfrac{3\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2\left(x_1+x_2\right)}=\dfrac{3\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2\left(x_1+x_2\right)}\)
\(=\dfrac{3\sqrt{\left(-3\right)^2-4.\left(-1\right)}}{-1.\left(-3\right)}=\sqrt{13}\)