Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x² - 9
= x² - 3²
= (x - 3)(x + 3)
b) 4x² - 1
= (2x)² - 1²
= (2x - 1)(2x + 1)
c) x⁴ - 16
= (x²)² - 4²
= (x² - 4)(x² + 4)
= (x² - 2²)(x² + 4)
= (x - 2)(x + 2)(x + 4)
d) x² - 4x + 4
= x² - 2.x.2 + 2²
= (x - 2)²
e) x³ - 8
= x³ - 2³
= (x - 2)(x² + 2x + 4)
f) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
Lời giải:
Chiều cao của cây lúc đầu: $AB+AC=9$
Chiều cao của cây còn lại: $AC$
Áp dụng định lý Pitago:
$AB^2=AC^2+BC^2$
$\Leftrightarrow (9-AC)^2=AC^2+3^2$
$\Leftrightarrow 81+AC^2-18AC=AC^2+9$
$\Leftrightarrow 81-18AC=9$
$\Leftrightarrow AC=4$ (m)
Vậy chiều cao còn lại của cây là 4 m.
Vì đồ thị hàm số y=ax+by=ax+b đi qua điểm A(−1;2)A(−1;2) nên ta có:
2=−1.a+b2=−1.a+b suy ra −a+b=2−a+b=2
Vi đồ thị hàm số y=ax+by=ax+b đi qua điểm B(1;4)B(1;4) nên ta có:
4=1.a+b4=1.a+b suy ra a+b=4(2)a+b=4(2)
Từ (1) và (2) ta tìm được a=1;b=3a=1;b=3
Vậy hàm số cần tìm là y=x+3y=x+3.
a)Thay x=2(TMDK) vào bt Q :
\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)
b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)
\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)
a) \(5\left(x+2y\right)-15x\left(x+2y\right)=\left(x+2y\right)\left(5-15x\right)\\ =5\left(x+2y\right)\left(1-3x\right)\)
b) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2\\=\left(2x-3\right)^2\)
c) \(\left(3x-2\right)^3-3\left(x-4\right)\left(x+4\right)+\left(x-3\right)^3-\left(x+1\right)\left(x^2-x+1\right)\\ =27x^3-54x^2+18x-8-3\left(x^2-16\right)+x^3-9x^2+27x-27-\left(x^3+1\right)\\=27x^3-54x^2+18x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-57x^2+36x+12\\ =3\left(3x^3-19x^2+12x+4\right)\)
Theo hằng đẳng thức đáng nhớ:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.3.4=28\)Lời giải:
$A=(x^2-2xy+y^2)+y^2+2x-6y+2028$
$=(x-y)^2+2(x-y)+(y^2-4y)+2028$
$=(x-y)^2+2(x-y)+1+(y^2-4y+4)+2023$
$=(x-y+1)^2+(y-2)^2+2023\geq 0+0+2023=2023$
Vậy $A_{\min}=2023$.
Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
A=(x2−2xy+y2)+y2+2x−6y+2028
=(�−�)2+2(�−�)+(�2−4�)+2028=(x−y)2+2(x−y)+(y2−4y)+2028
=(�−�)2+2(�−�)+1+(�2−4�+4)+2023=(x−y)2+2(x−y)+1+(y2−4y+4)+2023
=(�−�+1)2+(�−2)2+2023≥0+0+2023=2023=(x−y+1)2+(y−2)2+2023≥0+0+2023=2023
Vậy �min=2023Amin=2023.
Giá trị này đạt tại �−�+1=�−2=0x−y+1=y−2=0
⇔�=2;�=1⇔y=2;x=1
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2