K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

9 tháng 12 2023

a) x² - 9

= x² - 3²

= (x - 3)(x + 3)

b) 4x² - 1

= (2x)² - 1²

= (2x - 1)(2x + 1)

c) x⁴ - 16

= (x²)² - 4²

= (x² - 4)(x² + 4)

= (x² - 2²)(x² + 4)

= (x - 2)(x + 2)(x + 4)

d) x² - 4x + 4

= x² - 2.x.2 + 2²

= (x - 2)²

e) x³ - 8

= x³ - 2³

= (x - 2)(x² + 2x + 4)

f) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

Chiều cao của cây lúc đầu: $AB+AC=9$ 

Chiều cao của cây còn lại: $AC$

Áp dụng định lý Pitago:

$AB^2=AC^2+BC^2$

$\Leftrightarrow (9-AC)^2=AC^2+3^2$
$\Leftrightarrow 81+AC^2-18AC=AC^2+9$
$\Leftrightarrow 81-18AC=9$

$\Leftrightarrow AC=4$ (m) 

Vậy chiều cao còn lại của cây là 4 m.

DT
9 tháng 12 2023

loading... 

16 tháng 12 2024

Vì đồ thị hàm số y=ax+by=ax+b đi qua điểm A(−1;2)A(1;2) nên ta có:

   2=−1.a+b2=1.a+b suy ra −a+b=2a+b=2

Vi đồ thị hàm số y=ax+by=ax+b đi qua điểm B(1;4)B(1;4) nên ta có:

   4=1.a+b4=1.a+b suy ra a+b=4(2)a+b=4(2)

Từ (1) và (2) ta tìm được a=1;b=3a=1;b=3

Vậy hàm số cần tìm là y=x+3y=x+3.

DT
9 tháng 12 2023

a)Thay x=2(TMDK) vào bt Q :

\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)

b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)

c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)

\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)

DT
9 tháng 12 2023

a) \(5\left(x+2y\right)-15x\left(x+2y\right)=\left(x+2y\right)\left(5-15x\right)\\ =5\left(x+2y\right)\left(1-3x\right)\)

b) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2\\=\left(2x-3\right)^2\)

c) \(\left(3x-2\right)^3-3\left(x-4\right)\left(x+4\right)+\left(x-3\right)^3-\left(x+1\right)\left(x^2-x+1\right)\\ =27x^3-54x^2+18x-8-3\left(x^2-16\right)+x^3-9x^2+27x-27-\left(x^3+1\right)\\=27x^3-54x^2+18x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-57x^2+36x+12\\ =3\left(3x^3-19x^2+12x+4\right)\)

DT
9 tháng 12 2023

c) \(27x^3-54x^2+36x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-66x^2+63x+12\\=3\left(9x^3-22x^2+21x+4\right)\)

9 tháng 12 2023

Theo hằng đẳng thức đáng nhớ:

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.3.4=28\)
AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$A=(x^2-2xy+y^2)+y^2+2x-6y+2028$

$=(x-y)^2+2(x-y)+(y^2-4y)+2028$

$=(x-y)^2+2(x-y)+1+(y^2-4y+4)+2023$

$=(x-y+1)^2+(y-2)^2+2023\geq 0+0+2023=2023$
Vậy $A_{\min}=2023$.

Giá trị này đạt tại $x-y+1=y-2=0$

$\Leftrightarrow y=2; x=1$

12 tháng 12 2023

A=(x22xy+y2)+y2+2x6y+2028

=(�−�)2+2(�−�)+(�2−4�)+2028=(xy)2+2(xy)+(y24y)+2028

=(�−�)2+2(�−�)+1+(�2−4�+4)+2023=(xy)2+2(xy)+1+(y24y+4)+2023

=(�−�+1)2+(�−2)2+2023≥0+0+2023=2023=(xy+1)2+(y2)2+20230+0+2023=2023
Vậy �min⁡=2023Amin=2023.

Giá trị này đạt tại �−�+1=�−2=0xy+1=y2=0

⇔�=2;�=1y=2;x=1