Cho hàm số \(y=f\left(x\right)\)xác định với mọi x là số thực khác 0 thỏa mãn điều kiện \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Tính f(2).
Tớ cảm ơn trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề I là trung điểm AB
Vì I là trung điểm AB => OI vuông AB
AI = IB = AB/2 = 15 cm ( I là trung điểm )
Theo định lí Pytago tam giác AIO vuông tại I
\(OI=\sqrt{AO^2-AI^2}=8\)cm
Ta có : d(O;AB) = OH
=> OH vuông AB tại H (1)
Theo định lí Pytago tam giác AHO vuông tại H
\(AH=\sqrt{AO^2-HO^2}=8\)cm
Từ (1) => H là trung điểm AB
=> AB = 2AH = 2 . 8 = 16 cm
a, * Gọi H là trung điểm AI
Xét tam giác AQI vuông tại Q, H là trung điểm
QH = AH = HI = AI/2 (1)
Xét tam giác API vuông tại P, H là trung điểm
PH = AH = HI = AI/2 (2)
Từ (1) ; (2) vậy A;Q;I;B cùng thuộc đường tròn (O;AH)
B;C;P;Q thì rõ rồi bạn nhé, cách làm tương tự, gọi O là trung điểm nhé
b, Xét đường tròn (O) có B;C;P;Q thuộc đường tròn
Ta có : BC là đường kính, QP là dây cuung => BC > QP
a, ^BAC = 900 ( điểm thuộc đường tròn nhìn đường kính )
Theo Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=\sqrt{4R^2-R^2}=\sqrt{3}R\)
sinB = \(\frac{AC}{BC}=\frac{\sqrt{3}R}{2R}=\frac{\sqrt{3}}{2}\Rightarrow\)^B = 600
Vì ^C ; ^B phụ nhau => ^C = 900 - 600 = 300
b, Vì AH là đường đường cao với D thuộc AH
=> AD vuông BC (1)
Vì AD vuông BC => AH = HD (2)
Từ (1) ; (2) suy ra BC là đường trung trục AD
Vì BC là đường trung trực => AC = AD
=> tam giác ACD cân => ^CAD = ^CDA (3)
Xét tam giác AHC vuông tại H có ^HAC và ^C phụ nhau
=> ^HAC = 900 - 300 = 600 (4)
Từ (3) ; (4) suy ra tam giác ADC đều
c, ^ABC = 1/2 sđ cung AC ( góc nội tiếp chắn cung AC )
^CBD = 1/2 sđ cung CD ( góc nội tiếp chắn cung CD )
mà BC là đường trung trực nên AH = HD và BC vuông AD
=> C là điểm chính giữa cung AD => cung AC = cung CD (5)
Lại có ^AOC = 1/2 sđ cung AC ( góc ở tâm ) => ^AOC = ^ABC = 1/2 sđ cung AC
^COD = 1/2 sđ cung CD ( góc ở tâm ) => ^COD = ^CBD = 1/2 sđ cung CD
Lại có (5) suy ra ^AOC = ^COD
Xét tam giác OAE và tam giác ODE
OA = OD = R
OE _ chung
^AOE = ^EOD ( cmt )
Vậy tam giác OAE = tam giác ODE
=> ^OAE = ^ODE = 900
=> OA vuông AE
Vậy AE là tiếp tuyến của đường tròn (O)
d, bạn tính lần lượt EB ; CH ; BH ; EC xong nhân vào là ra nhé
Thế \(x=2,x=\frac{1}{2}\)thì được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)