giai giup minh voi, minh dang can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(AEF\)và tam giác \(MEC\):
\(\widehat{AEF}=\widehat{MEC}\)(đối đỉnh)
\(\widehat{EAF}=\widehat{EMC}\left(=90^o\right)\)
suy ra \(\Delta AEF~\Delta MEC\left(g.g\right)\).
b) Xét tam giác \(BAC\)và tam giác \(BMF\):
\(\widehat{B}\)chung
\(\widehat{BAC}=\widehat{BMF}\left(=90^o\right)\)
suy ra \(\Delta BAC~\Delta BMF\left(g.g\right)\).
suy ra \(\frac{BA}{BM}=\frac{BC}{BF}\)
\(\Rightarrow BA.BF=BM.BC\)
c) \(BA.BF=BM.BC\Rightarrow\frac{BA}{BC}=\frac{BM}{BF}\)
Xét tam giác \(BAM\)và tam giác \(BCF\):
\(\frac{BA}{BC}=\frac{BM}{BF}\)
\(\widehat{B}\)chung
suy ra \(\Delta BAM~\Delta BFC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMA}=\widehat{BFC}\).
d) Đặt \(\frac{BF}{BM}=\frac{BC}{BA}=k\)
suy ra \(\frac{S_{BAC}}{S_{ABM}}=k^2\)
mà \(S_{AMCF}=3S_{ABM}\Rightarrow S_{ABC}=4S_{ABM}\Rightarrow k=2\).
\(\frac{BC}{BA}=2\Rightarrow tanB=2\Rightarrow\widehat{B}=arctan\left(2\right).\)
`Answer:`
\(\frac{\left(m^2+1\right).x+1-2m^2}{x-5}\)\(=2m\left(ĐKXĐ:x\ne5\right)\)
`=>(m^2+1).x+1-2m^2=2m.(x-5)`
`<=>(m^2-2m+1).x=2m^2-10m-1`
`<=>(m-1)^2``x=2m^2-10m-1(1)`
Phương trình `(1)` có nghiệm duy nhất `<=>m\ne1`
Lúc đó nghiệm của phương trình `(1)` sẽ là \(x=\frac{2m^2-10m-1}{\left(m-1\right)^2}\)
Ta xét hiệu:
\(x-3=\frac{2m^2-10m-1}{\left(m-1\right)^2}-3\)
\(=\frac{2m^2-10m-1-3\left(m-1\right)^2}{\left(m-1\right)^2}\)
\(=\frac{-m^2-4m-4}{\left(m-1\right)^2}\)
\(=-\frac{\left(m+2\right)^2}{\left(m-1\right)^2}\)
\(\le0;\forall m\ne1\)
\(\Rightarrow x-3\le0;\forall m\ne1\)
\(\Rightarrow x\le3;\forall m\ne1\)
Dấu "=" xảy ra khi `m+2=0<=>m=-2`
\(\dfrac{x-2}{40}-\dfrac{2-x}{102}+1=1-\dfrac{2x-4}{2022}\\ \Leftrightarrow\dfrac{x-2}{40}+\dfrac{x-2}{102}+\dfrac{x-2}{1011}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{1}{40}+\dfrac{1}{102}+\dfrac{1}{1011}\right)=0\\ \Leftrightarrow x-2=0\left(vì.\dfrac{1}{40}+\dfrac{1}{102}+\dfrac{1}{1011}\ne0\right)\\ \Leftrightarrow x=2\)
\(\Leftrightarrow4x^2-4xy+4y^2=12\)
\(\Leftrightarrow\left(2x-y\right)^2+3y^2=12\)
\(\Leftrightarrow3y^2=12-\left(2x-y\right)^2\le12\)
\(\Rightarrow y^2\le4\Rightarrow y^2=\left\{0;1;4\right\}\)
\(\Rightarrow y=\left\{-2;-1;0;1;2\right\}\)
Thế vào pt ban đầu tính x tương ứng
a, \(\Rightarrow x-5\ne0\Leftrightarrow x\ne5\)
b, mà \(\left(5x-3\right)^2\ge0\forall x\)
\(\Rightarrow5x-3=0\Leftrightarrow x=\dfrac{3}{5}\)
dễ mà bạn
a)3x-18=0 à mà mik chx hc phương trình
3x=18+0 sorry bạn nhé
3x=18
x=18:3
x=6
vậy x=6
a)\(3x-18=0\)
\(\Leftrightarrow3x=18\)
\(\Leftrightarrow x=6\)
Vậy x=6
b)\(2x.\left(x-4\right)-3x+12=0\)
\(\Leftrightarrow2x.\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(2x-3\right).\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=4\end{cases}}}\)
Vậy .......
c)\(\frac{x-1}{2}-\frac{x+3}{3}=x+1\)
\(\Leftrightarrow6.\left(\frac{x-1}{2}-\frac{x+3}{3}\right)=6.\left(x+1\right)\)
\(\Leftrightarrow3.\left(x-1\right)-2.\left(x+3\right)=6x+6\)
\(\Leftrightarrow3x-3-2x-6=6x+6\)
\(\Leftrightarrow3x-2x-6x=6+3+6\)
\(\Leftrightarrow-5x=15\)
\(\Leftrightarrow x=-3\)
Vậy x= -3
d)\(\frac{x-3}{x+3}-\frac{5}{3-x}=\frac{30}{x^2-9}\)
\(\Leftrightarrow\frac{x-3}{x+3}-\frac{-5}{x-3}=\frac{30}{\left(x+3\right).\left(x-3\right)}\)
\(\Leftrightarrow\frac{\left(x-3\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}-\frac{-5.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}=\frac{30}{\left(x-3\right).\left(x+3\right)}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(-5\right).\left(x+3\right)=30\)
\(\Leftrightarrow x^2-6x+9-\left(-5x-15\right)=30\)
\(\Leftrightarrow x^2-6x+9+5x+15-30=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
Vậy......