tìm một phân số có tổng của tử số và mẫu số là 215 và bằng phân số 38/57
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì ABCD là hình thang
nên \(d\left(A;BC\right)=d\left(D;BC\right)=d\left(B;AD\right)=d\left(C;AD\right)\)
\(S_{ABC}=\dfrac{1}{2}\times BC\times d\left(A;BC\right)\)
\(S_{DBC}=\dfrac{1}{2}\times BC\times d\left(D;BC\right)\)
mà \(d\left(A;BC\right)=d\left(D;BC\right)\)
nên \(S_{ABC}=S_{DBC}\)
\(S_{BAD}=\dfrac{1}{2}\times AD\times d\left(B;AD\right)\)
\(S_{CAD}=\dfrac{1}{2}\times AD\times d\left(C;AD\right)\)
mà \(d\left(B;AD\right)=d\left(C;AD\right)\)
nên \(S_{BAD}=S_{CAD}\)
Vì AD//BC
nên \(\dfrac{IA}{IC}=\dfrac{ID}{IB}=\dfrac{AD}{BC}=\dfrac{1}{3}\)
=>IC=3IA;IB=3ID
Vì IC=3IA
nên \(S_{DIC}=3S_{DAI}\)
Vì IB=2ID
nên \(S_{ABI}=3S_{ADI}\)
=>\(S_{ABI}=S_{DIC}\)
b: Vì IC=3IA
nên \(S_{ICB}=3\cdot S_{IAB}=9\cdot S_{AID}\)
Ta có: \(S_{AID}+S_{DIC}+S_{AIB}+S_{BIC}=S_{ABCD}\)
=>\(\left(9+3+3+1\right)\cdot S_{AID}=48\)
=>\(S_{AID}=3\left(cm^2\right)\)
=>\(S_{AIB}=3\cdot3=9\left(cm^2\right)\)
\(3200+\overline{abc}=81\times\overline{abc}\\ 81\times\overline{abc}-\overline{abc}=3200\\ 80\times\overline{abc}=3200\\ \overline{abc}=3200:80\\ \overline{abc}=40\)(Bạn xem lại đề xem có sai đề không nhỉ, \(\overline{abc}\) là số có 3 chữ số mà kết quả lại ra 40)
\(3200+\overline{abc}=81\times\overline{abc}\)
\(3200=81\times\overline{abc}-\overline{abc}\)
\(3200=81\times\overline{abc}-\overline{abc}\times1\)
\(3200=\overline{abc}\times80\)
\(\overline{abc}=3200:80\)
\(\overline{abc}=40\)
\(3200=\overline{abc}\times\left(81-1\right)\)
Bài 1:
a: Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
b: Xét ΔIBC có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIBC cân tại I
c: Ta có: MN//BC
=>\(\widehat{INM}=\widehat{ICB};\widehat{IMN}=\widehat{IBC}\)
mà \(\widehat{ICB}=\widehat{IBC}\)(ΔIBC cân tại I)
nên \(\widehat{INM}=\widehat{IMN}\)
=>ΔIMN cân tại I
Ta có: MN//BC
IA\(\perp\)BC
Do đó: IA\(\perp\)MN
ΔIMN cân tại I
mà IA là đường cao
nên A là trung điểm của MN
d: Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
\(\widehat{IAE}=\widehat{IAF}\)(ΔAHB=ΔAHC)
Do đó: ΔAEI=ΔAFI
=>IE=IF
Xét ΔBEI vuông tại E và ΔBHI vuông tại H có
BI chung
\(\widehat{EBI}=\widehat{HBI}\)
Do đó: ΔBEI=ΔBHI
=>IE=IH
=>IE=IF=IH
Bài 2:
a: Xét ΔFAD và ΔFCB có
FA=FC
\(\widehat{AFD}=\widehat{CFB}\)
FD=FB
Do đó: ΔFAD=ΔFCB
=>AD=CB
b: ΔFAD=ΔFCB
=>\(\widehat{FAD}=\widehat{FCB}\)
=>AD//BC
Xét ΔEAH và ΔEBC có
EA=EB
\(\widehat{AEH}=\widehat{BEC}\)(hai góc đối đỉnh)
EH=EC
Do đó: ΔEAH=ΔEBC
=>\(\widehat{EAH}=\widehat{EBC}\)
=>AH//BC
Ta có: ΔEAH=ΔEBC
=>AH=BC
mà AD=BC
nên AH=AD
Ta có: AH//BC
AD//BC
mà AH,AD có điểm chung là A
nên H,A,D thẳng hàng
mà AH=AD
nên A là trung điểm của DH
c: Xét ΔFDC và ΔFBA có
FD=FB
\(\widehat{DFC}=\widehat{BFA}\)(hai góc đối đỉnh)
FC=FA
Do đó: ΔFDC=ΔFBA
=>\(\widehat{FDC}=\widehat{FBA}\)
=>DC//BA
d: Gọi giao điểm của CE và BF là K
Xét ΔABC có
BF,CE là các đường trung tuyến
BF cắt CE tại K
Do đó: K là trọng tâm của ΔABC
=>AK đi qua trung điểm M của BC
Ta có: DC//BA
=>CP//AB
Xét tứ giác ACBH có
AH//BC
AH=BC
Do đó: ACBH là hình bình hành
=>BH//AC
=>BP//AC
Xét tứ giác ABPC có
AB//PC
AC//BP
Do đó: ABPC là hình bình hành
=>AP cắt BC tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của AP
=>A,M,P thẳng hàng
=>A,K,P thẳng hàng
=>AP,CH,BD đồng quy
a: (2m-4)x+2-m=0
=>x(2m-4)=m-2
TH1: m=2
Phương trình sẽ trở thành \(x\left(2\cdot2-4\right)=2-2\)
=>0x=0(luôn đúng)
=>Phương trình có vô số nghiệm
TH2: \(m\ne2\)
Phương trình sẽ tương đương với \(x=\dfrac{m-2}{2m-4}=\dfrac{1}{2}\)
b: \(\left(m+1\right)x=\left(3m^2-1\right)x+m-1\)
=>\(\left(m+1\right)x-\left(3m^2-1\right)x=m-1\)
=>\(x\left(m+1-3m^2+1\right)=m-1\)
=>\(x\left(-3m^2+m+2\right)=m-1\)
=>\(x\left(-3m^2+3m-2m+2\right)=m-1\)
=>\(x\cdot\left(m-1\right)\left(-3m-2\right)=m-1\)
TH1: m=1
Phương trình sẽ trở thành \(x\left(1-1\right)\left(-3\cdot1-2\right)=1-1\)
=>0x=0(luôn đúng)
=>Phương trình có vô số nghiệm
TH2: m=-2/3
Phương trình sẽ trở thành:
\(x\left(-\dfrac{2}{3}-1\right)\left(-3\cdot\dfrac{-2}{3}-2\right)=\dfrac{-2}{3}-1\)
=>0x=-5/3(vô lý)
=>Phương trình vô nghiệm
TH3: \(m\notin\left\{1;-\dfrac{2}{3}\right\}\)
Phương trình sẽ tương đương với \(x=\dfrac{m-1}{\left(m-1\right)\left(-3m-2\right)}=\dfrac{-1}{3m+2}\)
c: \(ax+2m=a+x\)
=>ax-x=a-2m
=>x(a-1)=a-2m
TH1: a=1
Phương trình sẽ trở thành:
x(1-1)=1-2m
=>0x=1-2m
-Nếu \(m=\dfrac{1}{2}\) thì 0x=1-2*1/2=0
=>Phương trình có vô số nghiệm
Nếu \(m\ne\dfrac{1}{2}\) thì phương trình vô nghiệm
TH2: a<>1
Phương trình sẽ tương đương với \(x=\dfrac{a-2m}{a-1}\)
Giải:
Từ 1 đến 9 có: (9 - 1): 1 + 1 = 9 (số)
Vậy từ 1 đến 9 có số chữ số là: 1 x 9 = 9 (chữ số)
Từ 10 đến 99 có: (99 - 10) : 1 + 1 = 90 (số)
Từ 10 đến 99 có số chữ số là: 2 x 90 = 180 (chữ số)
Từ 100 đến 172 có: (172 - 100) : 1 + 1 = 73 (số)
Từ 100 đến 172 có số chữ số là: 3 x 73 = 219 (số)
Từ 1 đến 172 có số chữ số là:
9 + 180 + 219 = 408 (chữ số)
Kết luận:...
Giải:
Theo bài ra ta có sơ đồ
Theo sơ đồ ta có:
Tử số của phân số là: 215 : (38 + 57) x 38 = 86
Mẫu số của phân số là: 215 - 86 = 129
Phân số cần tìm là: \(\dfrac{86}{129}\)
Đáp số:....