Cho ABC vuông góc tại A, đường cao AH.
a) Chứng minh tam giác ABC và HBA đồng dạng.
b) Kẻ phân giác BN ( N thuộc AC) , tia BNcắt AH tại M,
chứng minh MH.NC = MA .NA
c) Qua M kẻ EF //BC ( E thuộc AB, F thuộc AC) chứng minh AF/AC=MA/AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^2+3m+6=m^2+\dfrac{2.3}{2}m+\dfrac{9}{4}+\dfrac{15}{4}=\left(m+\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0\)(luôn đúng)
Vậy ta có đpcm
\(\dfrac{x+1}{98}+\dfrac{x+2}{97}+\dfrac{x+90}{9}+\dfrac{x+84}{15}>-4\\ \Leftrightarrow\left(\dfrac{x+1}{98}+1\right)+\left(\dfrac{x+2}{97}+1\right)+\left(\dfrac{x+90}{9}+1\right)+\left(\dfrac{x+84}{15}+1\right)>0\\ \Leftrightarrow\dfrac{x+99}{98}+\dfrac{x+99}{97}+\dfrac{x+99}{9}+\dfrac{x+99}{15}>0\\ \Leftrightarrow\left(x+99\right)\left(\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{9}+\dfrac{1}{15}\right)>0\)
Vì \(\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{9}+\dfrac{1}{15}>0\Rightarrow x+99>0\Rightarrow x>-99\)
+với \(x=0\Rightarrow y=1\) ko TM (DO \(x,y\inℕ^∗\) (bạn thay vào là tìm đc y nhé)(2)
+xét \(x\ne0;x,\inℕ^∗\Rightarrow x\ge1\)
do vậy nên ta có điều sau: \(x^6+2x^3+1< x^6+3x^3+1< x^6+4x^3+4\)
\(\Leftrightarrow\left(x^3+1\right)^2< y^4< \left(x^3+2\right)^2\)
do \(x^3+1\) và \(x^3+2\) là 2 số tự nhiên liên tiếp nên giữa bình phương của chúng sẽ ko có số ào cả vì vậy nếu \(x\ge1\) thì ko tìm đc y(2)
từ 1 và 2=> PT vô nghiệm
→Xét\( x ≥ 1\) thì:
\(x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)² \)
\(và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)² \)
\(=> (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)² \)
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nghiệm với \(x ≥ 1 \)
→Xét x = 0: tính được \(y = ± 1 => pt có 2 nº (0; -1) và (0;1) \)
→Xét\( x = -1: y⁴ = -1 (vô nº) \)
→Xét x ≤ -2: để dễ nhìn đặt \( z = -x => z ≥ 2 \)
pt trở thành: \(y⁴ = z⁶ - 3z³ + 1\)
Ta thấy: \(z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2) \)
\(=> z⁶ - 3z³ + 1 < (z³ - 1)² \)
và \((z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8) \)
\(=> z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)² \)
Do đó: \((z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)² \)
=> \(y⁴ \)nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nº với \(x ≤ -2 \)
Kết luận pt đã cho có 2 nº là \((0; -1) và (0;1) \)
1827374838100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999999999999999999999999999999999999999988888888888863636478348565588888858488545<856599889888///884485585A