K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \). **Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)** Sử dụng đồng nhất thức cơ bản: \[ \sin^2(x) + \cos^2(x) = 1 \] Và: \[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \] \[ = 1 - 2\sin^2(x)\cos^2(x) \] Sử dụng tiếp...
Đọc tiếp

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \).

**Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)**

Sử dụng đồng nhất thức cơ bản:
\[ \sin^2(x) + \cos^2(x) = 1 \]
Và:
\[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \]
\[ = 1 - 2\sin^2(x)\cos^2(x) \]

Sử dụng tiếp đồng nhất thức:
\[ \sin^2(x)\cos^2(x) = \left(\frac{\sin(2x)}{2}\right)^2 = \frac{\sin^2(2x)}{4} \]

Do đó:
\[ M = 1 - 2\cdot\frac{\sin^2(2x)}{4} = 1 - \frac{\sin^2(2x)}{2} \]

**Bước 2: Tìm giá trị nhỏ nhất và lớn nhất của \( M = 1 - \frac{\sin^2(2x)}{2} \)**

Biểu thức \(\sin^2(2x)\) có giá trị từ 0 đến 1, do đó:
\[ 0 \leq \sin^2(2x) \leq 1 \]

Áp dụng vào biểu thức \( M \):
\[ M = 1 - \frac{\sin^2(2x)}{2} \]
Khi \(\sin^2(2x) = 0\):
\[ M = 1 - 0 = 1 \]

Khi \(\sin^2(2x) = 1\):
\[ M = 1 - \frac{1}{2} = \frac{1}{2} \]

Vậy:
\[ m = \frac{1}{2} \]
\[ M = 1 \]

**Bước 3: Tính giá trị của \( P \)**

\[ P = 2m + M^2 + 2024 \]
\[ P = 2 \cdot \frac{1}{2} + 1^2 + 2024 \]
\[ P = 1 + 1 + 2024 \]
\[ P = 2026 \]

Vậy, giá trị của \( P \) là \( 2026 \). Nếu bạn có thêm bất kỳ câu hỏi nào hoặc cần hỗ trợ thêm, đừng ngần ngại hỏi nhé! 😊

 

0