Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.
Do AB//CD( vì cùng vuông góc với BD)
Nên áp dụng định lí Ta lét , ta được :
EB/ED=AB/CD
=> EB/6 = 150/4
=> EB = 150.6/4 = 225 (cm)
Đổi đơn vị: 1,51,5 m =150=150 cm.
Ta có ��AB // ��CD (cùng vuông góc ��BD) suy ra ����=����EDEB=DCAB (định lí Thalès)
Suy ra ��=��.����=150.64=225EB=DCAB.ED=4150.6=225 (cm).
Vậy người đứng cách vật kính máy ảnh là 225225 cm.
Lời giải:
a. Vì $A,D$ đối xứng nhau qua $M$ nên $M$ là trung điểm $AD$
Tứ giác $ABDC$ có 2 đường chéo $AD, BC$ cắt nhau tại trung điểm $M$ của mỗi đường nên là hình bình hành.
Mà $\widehat{BAC}=90^0$ nên $ABDC$ là hình chữ nhật.
b.
Vì $ABDC$ là hcn nên:
$AB\parallel DC, AB=DC$ (1)
Vì $E$ đối xứng với $A$ qua $B$ nên $A,B,E$ thẳng hàng và $AB=BE$(2)
Từ $(1); (2)\Rightarrow BE\parallel DC, BE=DC$
Tứ giác $BEDC$ có 2 cạnh đối nhau $BE, DC$ song song và bằng nhau nên $BEDC$ là hình bình hành.
c.
$BEDC$ là hbh nên $BC\parallel ED$ và $BC=ED$
Ta có:
$BC=ED$, mà $BC=2BM$ nên $ED=2BM$
$BC\parallel ED\Rightarrow BM\parallel ED$. Áp dụng định lý Talet:
$\frac{EK}{KM}=\frac{ED}{BM}=\frac{2BM}{BM}=2$
$\Rightarrow EK=2KM$ (đpcm)
Kéo dài AC về phía A lấy điểm H sao cho CF = FH;
Lúc này bài toán trở thành chứng minh BE = HF
Xét tam giác HBC có: MB = MC (gt); FH = FC
Nên MF là đường trung bình của tam giác HBC ⇒ ME//BH
Mặt khác ta có ME//AD ⇒ \(\widehat{AEF}\) = \(\widehat{BAD}\) (hai góc đồng vị) (1)
\(\widehat{BAD}\) = \(\widehat{DAF}\) (AD là phân giác của góc BAC) (2)
\(\widehat{DAF}\) = \(\widehat{AFE}\) (hai góc so le trong) (3)
Kết hợp (1);(2);(3) ta có: \(\widehat{AEF}\) = \(\widehat{AFE}\) ⇒ \(\Delta\)AEF cân tại A ⇒ AE = AF (*)
Vì ME//HB nên: \(\widehat{AHB}\) = \(\widehat{AFE}\) (so le trong)
\(\widehat{ABH}\) = \(\widehat{AEF}\) (so le trong)
⇒ \(\widehat{AHB}\) = \(\widehat{ABH}\) ⇒ \(\Delta\) AHB cân tại A ⇒ AB = AH (**)
Cộng vế với vế của(*) và(*) ta có: AE + AB = AF + AH
⇒ BE = FH
⇒ BE = CF (vì cùng bằng HF)
Đề này khó quá cô, đợi em suy nghĩ rồi e giải nha cô!
Trường em còn chưa học đến một số kiến thức trong này.