Bài 4: (0,5 điểm) Tính $C=x^{14}-10 x^{13}+10 x^{12}-10 x^{11}+...+10 x^2-10 x+10$ tại $x=9$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì Δ ABC vuông tại A và AB = AC nên Δ ABC vuông cân tại A
=> góc ABH và góc ACH bằng 45o
Xét ΔAHB và ΔAHC có:
góc ABH bằng góc ACH (c/m trên)
AB=AC (gt)
BH=HC (H là trung điểm BC)
=> ΔAHB=ΔAHC (c.g.c)
a)
A: "Số được chọn là số nguyên tố" là biến cố ngẫu nhiên.
B: "Số được chọn là số có một chữ số" là biến cố chắc chắn.
C: "Số được chọn là số tròn chục" là biến cố không thể.
b)
Có 3 phần tử là số nguyên tố trong tập hợp M là: 2; 3; 5
Tập hợp M có 6 phần tử
⇒ Xác suất của biến cố A:
P(A) = 3/6 = 1/2
a: A là biến cố ko thể thì �∈{2;3;5;7}x∈{2;3;5;7}
b: B là biến cố ngẫu nhiên thì �∈{1;4;6;7;8;9}x∈{1;4;6;7;8;9}
c: C là biến cố chắc chắn thì �∈∅x∈
1) Số tiền mua 5 chai dung dịch sát khuẩn:
5 . 80000 = 400000 (đồng)
Số tiền mua 3 hộp khẩu trang: 3x (đồng)
Số tiền bác Mai phải thanh toán:
F(x) = 400000 + 3x (đồng)
2)
a) A(x) = 2x² - 3x + 5 + 4x - 2x²
= (2x² - 2x²) + (-3x + 4x) + 5
= x + 5
Đa thức A(x) có:
- Bậc: 1
- Hệ số cao nhất: 1
- Hệ số tự do: 5
b) C(x) = (x - 1).A(x) + B(x)
= (x - 1)(x + 5) + (x² - 2x + 5)
= x² + 5x - x - 5 + x² - 2x + 5
= (x² + x²) + (5x - x - 2x) + (-5 + 5)
= 2x² + 2x
Xét pt: \(5x^2-10x+c=0\)
\(\Leftrightarrow5x^2-10x+5=5-c\)
\(\Leftrightarrow5\left(x-1\right)^2=5-c\)
Do \(5\left(x-1\right)^2\ge0;\forall x\) nên đa thức có nghiệm khi \(5-c\ge0\)
\(\Rightarrow c\le5\)
A(\(x\)) = 5\(x^2\) - 10\(x\) + c
A(\(x\)) nhận 2 là nghiệm ⇔ A(2) = 0
Thay 2 vào A(\(x\)) = 5\(x^2\) - 10\(x\)+ c ta có:
5.22 - 10.2 + c = 0
20 - 20 + c = 0
0 + c = 0
c = 0
Vậy c = 0 thì A(\(x\)) nhận 2 là nghiệm.
\(2xy+6x^2-3x-y=11\)
=>\(2x\left(y+3x\right)-\left(y+3x\right)=11\)
=>(2x-1)(3x+y)=11
=>\(\left(2x-1\right)\left(3x+y\right)=1\cdot11=11\cdot1=\left(-1\right)\cdot\left(-11\right)=\left(-11\right)\cdot\left(-1\right)\)
=>\(\left(2x-1;3x+y\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
=>\(\left(x;3x+y\right)\in\left\{\left(1;11\right);\left(6;1\right);\left(0;-11\right);\left(-5;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(1;8\right);\left(6;-17\right);\left(0;-11\right);\left(-5;14\right)\right\}\)
Số không không phải là số âm, cũng không phải là số dương.
a) \(P\left(x\right)+Q\left(x\right)=x^4-2x^2+1\)
\(\Rightarrow Q\left(x\right)=x^4-2x^2+1-P\left(x\right)\)
\(=x^4-2x^2+1-\left(x^3-2x^2+x-\dfrac{1}{2}\right)\)
\(=x^4-2x^2+1-x^3+2x^2-x+\dfrac{1}{2}\)
\(=x^4-x^3+\left(-2x^2+2x^2\right)-x+\left(1+\dfrac{1}{2}\right)\)
\(=x^4-x^3-x+\dfrac{3}{2}\)
b) \(P\left(x\right)-H\left(x\right)=x^3+x^2+2\)
\(\Rightarrow H\left(x\right)=P\left(x\right)-\left(x^3+x^2+2\right)\)
\(=\left(x^3-2x^2+x-\dfrac{1}{2}\right)-\left(x^3+x^2+2\right)\)
\(=x^3-2x^2+x-\dfrac{1}{2}-x^3-x^2-2\)
\(=\left(x^3-x^3\right)+\left(-2x^2-x^2\right)+x+\left(-\dfrac{1}{2}-2\right)\)
\(=-3x^2+x-\dfrac{5}{2}\)
Ta có : x = 9
=> x+1 = 10
C = x14 - (x+1)x13 + (x+1)x12 -(x+1)x11+...+ (x+1)x2 - (x+1)x + x+1
= x14 - x14 - x13 + x13 + x12 - x12 - x11 +...+ x3 + x2 - x2 - x + x +1
= 1
x=9 nên x+1=10
\(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+x+1\)
\(=x^{14}-x^{14}-x^{13}+...+x^3+x^2-x^2-x+x+1\)
=1