Một bạn học sinh đi học từ nhà đến trường với vận tốc trung bình 4 km/h. Sau khi đi được \(\frac{2}{3}\) quãng đường bạn ấy đã tăng vận tốc lên 5 km/h. Tính quãng đường từ nhà đến trường của bạn học sinh đó, biết rằng thời gian bạn ấy đi từ nhà đến trường là 28 phút.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7n+15}{n-3}=\frac{7n-21}{n-3}+\frac{36}{n-3}=\frac{7.\left(n-3\right)}{n-3}+\frac{36}{n-3}=7+\frac{36}{n-3}\)
7 là số nguyên =>để ps trên là số nguyên thì n-3 phải là ước của 36
\(\Rightarrow n-3\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
\(n\in\){4;5;6;7;9;12;15;21;39}
Vậy có 9 gtrị n thỏa mãn
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
A=\(A=3\left[a^2+\left(3b\right)^2-6ab\right]+5\left(c^2-6c+9\right)+237-45\ge237-45\)
Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:
Vì bản chất như sau:
thỏa ĐK ban đầu x^3+y^3+z^3=3xzy
Từ HĐT=>
\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)
=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định
do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)
Nếu thêm đk (*) giải tiếp
(2) vô nghiệm
do vậy khi đó chỉ có nghiệm duy nhất của (1)
x+y=-z
x+z=-y
z+y=-x
Thay vào biểu thwucs P=-2016
f(0)=-4/10
a/b=-4/10=-2/5
f(1)=-6/26=-3/13=(a+1)/(b+1)
5a=-2b
a/-2=b/5=(a+b)/3
13a+13=-3b-3
15a=-6b
26a=-6b-6
11a=-6
a+b=-3/2.a=3/2.6/11=9/11
a+b=9/11
chia hết cho x^2-4 => x=+-2 là gnhieemj
16+2a+b=0
16-2a+b=0
trừ cho nhau
4a=0=> a=0
=> b=-16
A+b=-16
nhiều cách
đặt x+1=y=> x=y-1
Biểu thức=(y-1)^30+(y-1)^4-(y-1)^1975+1
khai triển biêu thúc trên số hạng không chứa y là
1+1+1+1=4
ồ dư 4
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Gọi quãng đường là S, thời gian học sinh đó đi được 2/3 quãng đường đầu là t1, thời gian đi 1/3 quãng đường còn lại là 12
Ta có:
\(4t_1=\frac{2}{3}S\Rightarrow t_1=\frac{2}{3}S:4=\frac{S}{6}\left(h\right)\)
\(5t_2=\frac{1}{3}S\Rightarrow t_2=\frac{1}{3}S:5=\frac{S}{15}\left(h\right)\)
Thời gian đi cả quãng đường là: 28 phút = 7/15 giờ
<=> \(t_1+t_2=\frac{7}{15}\left(h\right)\Leftrightarrow\frac{S}{6}+\frac{S}{15}=\frac{7}{15}\Leftrightarrow S\left(\frac{1}{6}+\frac{1}{15}\right)=\frac{7}{15}\)
\(\Leftrightarrow S.\frac{7}{30}=\frac{7}{15}\Leftrightarrow S=\frac{7}{15}:\frac{7}{30}=2\left(km\right)\)
Vậy ...................
Gọi quãng đường từ nhà tới trường là a(Km)
Đổi 28 phút =7/15 (h)
Bạn sau khi đi được 2/3 quãng đường =2/3*a với vận tốc 4km/h hết số thời gian là:
t1=s/v= 2/3*a/4= a/6(Giờ)
Tương tự bạn đi 1/3 quãng đường sau =1/3*a với vận tốc 5 km/h hết số thời gian là
t2=s/v= 1/3*a/5= a/15(Giờ)
Tổng thời gian bạn đi la:
t= t1+ t2= a/6+a/15=7*a/30=7/15
==>a=2(Km)
Vậy quãng đường từ nhà bạn đó đến trường là 2km.