2. Cho hình chữ nhật có chiều dài là 4, (m), chiều rộng là 2- (m). Tính chu vi và diện tích
của hình chữ nhật đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\dfrac{2}{5}\times\dfrac{-3}{4}\)
\(=\dfrac{12}{5}\times\dfrac{-3}{4}\)
\(=-\dfrac{36}{20}\)
\(=-\dfrac{9}{5}\)
\(x^2⋮6\Rightarrow x^2\in\left\{1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{1;\sqrt[]{2};\sqrt[]{3};\sqrt[]{6}\right\}\)
\(\Rightarrow x\in\left\{1\right\}\left(x\in N\right)\)
\(\Rightarrow\forall x\inℕ,x^2⋮6\Rightarrow x⋮6\) là mệnh đề sai
Bạn xem lại nhé, đề viết với mọi x ∈ N mà bạn, bạn mới xét vài trường hợp chứ không bao quát
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
\(\left|5x-3\right|-x=7\\ \Leftrightarrow\left|5x-3\right|=7+x\)
Nếu \(\left\{{}\begin{matrix}5x-3\ge0\Leftrightarrow5x\ge3\Leftrightarrow x\ge\dfrac{3}{5}\\5x-3< 0\Leftrightarrow5x< 3\Leftrightarrow x< \dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=7+x\\-\left(5x-3\right)=7+x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}5x-x=7+3\\-5x+3=7+x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\-5x-x=7-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{4}\\-6x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
A = \(\dfrac{3}{1-2x}\) ( A \(\in\) Z; \(x\in\) Z)
A \(\in\) Z ⇔ 3 ⋮ 1 - 2\(x\)
Ư(3) = { -3; -1; 1; 3}
lập bảng ta có:
\(1-2x\) | -3 | -1 | 1 | 3 |
\(x\) | 2 | 1 | 0 | -1 |
Theo bảng trên ta có: \(x\in\) { -1; 0; 1; 2}
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a) �2=�5=�7;�+�+�=562x=5y=7z;x+y+z=56
�2=�5=�7=�+�+�2+5+7=5614=42x=5y=7z=2+5+7x+y+z=1456=4
⇒{�=4.2=8�=4.5=20�=4.7=28⇒⎩⎨⎧x=4.2=8y=4.5=20z=4.7=28
b) �1,1=�1,3=�1,4(1);2�−�=5,51,1x=1,3y=1,4z(1);2x−y=5,5
(1)⇒2�−�1,1.2−1,3=5,50,9(1)⇒1,1.2−1,32x−y=0,95,5
⇒⎩⎨⎧x=1,1.0,95,5=0,96,05y=1,3.0,95,5=0,97,15z=1,11,4.x=1,11,4.0,96,05=0,998,47
d) �2=�3=�5;���=−302x=3x=5z;xyz=−30
�2=�3=�5=���2.3.5=−3030=−12x=3x=5z=2.3.5xyz=30−30=−1
⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5⇒⎩⎨⎧x=2.(−1)=−2y=3.(−1)=−3z=5.(−1)=−5
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
\(...=\dfrac{5}{2}+\dfrac{6}{9}=\dfrac{5}{2}+\dfrac{2}{3}=\dfrac{15}{6}+\dfrac{4}{6}=\dfrac{19}{6}\)
Chu vi : \(\left(4+2\right).2=12\left(m\right)\)
\(S=4.2=8\left(m^2\right)\)