K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

bạn dựa vào bài tương tự này nha :

Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.

  • langtuthattinh và The gunners thích

#2 Nguyen Duc Thuan

Sĩ quan

  • Thành viên
  • 367 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Hùng Vương, Phú Thọ

Đã gửi 06-02-2013 - 22:17

Vào lúc 06 Tháng 2 2013 - 22:04, 'hoangtubatu955' đã nói:

Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.

Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn)
là hợp số (QED) :lol: :lol:

12 tháng 4 2018

      \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Vì    \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)

hay    \(9x^2-6x+1>0\)

12 tháng 4 2018

Ta có :

\(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)

Vậy \(9x^2-6x+3>0\forall x\in R\)