K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

IK ở đâu ra vậy

10 tháng 3 2019

IK\(\perp\)BC (K thuộc BC)

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

9 tháng 3 2019

Hình vẽ  A B C E F 10 cm 12 cm I

9 tháng 3 2019

a) Tam giác ABC cân tại A

AI là đường cao của tam giác ABC => AI cũng là đường trung tuyến của tam giác ABC

=> IB = IC

b) Ta có: \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6\) (cm)

Tam giác ABI vuông tại I

Áp dụng định lý Pytago suy ra:

\(AI^2+BI^2=AB^2\)

\(\Rightarrow AI=\sqrt{AB^2-BI^2}=\sqrt{10^2-6^2}=8\) (cm)

c) Tam giác ABC cân tại A => AB = AC

Ta có: BE = CF suy ra: AB+BE = AC+CF

                              => AE    =  AF

                               => Tam giác AEF cân tại A

                               => \(\widehat{F}=\widehat{E}\)

Và tam giác ABC cân tại A => \(\widehat{B}=\widehat{F}\)

=> \(\widehat{ABC}=\widehat{F};\widehat{ACB}=\widehat{F}\)

Mà \(\widehat{ABC}\) và \(\widehat{F}\) ở vị trí so le trong => BC // EF

=> đpcm

9 tháng 3 2019

Ta có: \(\left|x+1\right|\ge0\)

           \(\left|x+2\right|\ge0\)

             ...................

          \(\left|x+2014\right|\ge0\)

Công vế theo vế suy ra:

\(\left|x+1\right|+\left|x+2\right|+....+\left|x+2014\right|\ge0\)

Mà \(\left|x+1\right|+\left|x+2\right|+...+\left|x+2014\right|=3021x\) (1)

\(\Rightarrow3021x\ge0\)

\(\Rightarrow x\ge0\)

Nên (1) <=> \(x+1+x+2+x+3+....+x+2014=3021x\)

           \(\Leftrightarrow2014x+\frac{2014.2015}{2}=3021x\)

            \(\Leftrightarrow3021x-2014x=2029105\)

             \(\Leftrightarrow1007x=2029105\)

              \(\Leftrightarrow x=2015\)

Vậy x = 2015