Cho biểu thức:
\(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
a) Rút gọn A.
b) Tìm GTLN của biểu thức A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:Giải thích các bước giải:
Xét Δ ABC có AM là trung trực ⇒ MB = MCXét Δ ABC có AM là trung trực ⇒ MB = MC
a, Xét Δ vuông AHE có ∠AEH + ∠EAH =a, Xét Δ vuông AHE có ∠AEH + ∠EAH = 90o(∠AHE=90o)90o(∠AHE=90o)
Xét Δ vuông AHF có ∠AFH + ∠FAH =Xét Δ vuông AHF có ∠AFH + ∠FAH = 90o(∠AHF=90o)90o(∠AHF=90o)
Mà ∠EAH = ∠FAH (Phân giác góc A)Mà ∠EAH = ∠FAH (Phân giác góc A)
⇒ ∠AEH = ∠AFH⇒ ∠AEH = ∠AFH
⇒ Δ AFE cân tại A⇒ Δ AFE cân tại A
b, Có Δ AFE cân tại A (câu a)b, Có Δ AFE cân tại A (câu a)
⇒AE=AF⇒AE=AF
Xét Δ vuông AHB và Δ vuông AHK có :Xét Δ vuông AHB và Δ vuông AHK có :
∠EAH = ∠FAH (Phân giác góc A), AH chung∠EAH = ∠FAH (Phân giác góc A), AH chung
⇒ Δ vuông AHB = Δ vuông AHK (cgv - gn)⇒ Δ vuông AHB = Δ vuông AHK (cgv - gn)
⇒AB=AK(cctư)⇒AB=AK(cctư)
Chứng minh tương tự ⇒ Δ vuông AHE = Δ vuông AHF (cgv - gn)Chứng minh tương tự ⇒ Δ vuông AHE = Δ vuông AHF (cgv - gn)
⇒HE=HF(cctư)⇒HE=HF(cctư)
Xét Δ BME và Δ CMF có :Xét Δ BME và Δ CMF có :
MB = MC (câu a) ,∠BME = ∠CMF (đối đỉnh), HE = HF (cmt)MB = MC (câu a) ,∠BME = ∠CMF (đối đỉnh), HE = HF (cmt)
⇒ Δ BME = Δ CMF (c - g - c)⇒ Δ BME = Δ CMF (c - g - c)
⇒BE=FC⇒BE=FC
Có AE = AF (cmt)Có AE = AF (cmt)
⇒ AB + BE = AK + KF⇒ AB + BE = AK + KF
⇒ BE = KF (AB = AK)⇒ BE = KF (AB = AK)
Mà BE = FC (cmt)Mà BE = FC (cmt)
⇒KF=FC(đpcm)⇒KF=FC(đpcm)
Chúc bạn học tốt !
a) ĐK : \(x\ge0\)
A = \(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\cdot\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) \(A=\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{x-\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le1\)
=> Max A = 1
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1
Vậy Max A = 1 <=> x = 1
x = 1 nha