cho tam giác abc cân tại a. Trên các cạnh AB, AC lần lượt lấy điểm M,N sao cho BM=CN. Vẽ MD vuông góc vs BC tại M. NE vuông góc vs BC tại E. CMR
a) tam giác MBD= tam giác NCE
b) AD=AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác MBH và tam giác MCK ta có:
góc MHB= góc MKC=90 độ
BM=MC(gt)
góc B =góc C(gt)
vậy tam giác BMH = tam giác CMK(ch-gn)
b, xét tam giác AMH và tam giác AMK có:
AM chung
MH=MK( do tam giác BMH= tam giác CMK)
góc AHM= góc AKM=90 độ
suy ra tam giác AMH= tam giác AMK( ch-cgv)
Ta có:
X^2 lớn hơn hoặc bằng 0
|y-2| lớn hơn hoặc bằng 0 Vậy:
Để B đạt GTNN thì X^2 và |y-2| =0
Vậy x^2=0 suy ra x=0
Và |y-2|=0 suy ra y=2 Vậy GTNN của B là -1
Xét \(\Delta ABE\)và \(\Delta DBC\)có :
\(AB=BD\)( do \(\Delta ABD\)đều )
\(\widehat{ABE}=\widehat{DBC}\)(vì \(\widehat{ABD}+\widehat{DBE}=\widehat{DBE}+\widehat{EBC}\left(\widehat{ABD}=\widehat{EBC}=45^o\right)\)
\(BC=BE\)(do \(\Delta BEC\)đều )
\(\Rightarrow\Delta ABE=\Delta DBC\left(c.g.c\right)\)
\(\Rightarrow AE=DC\left(dpcm\right)\)
a) Xét tam giác MBD vuông tại D và tam giác NCE vuông tại E có:
BM=CN(gt)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
Suy ra \(\Delta MBD=\Delta NCE\)(cạnh huyền-góc nhọn)
=>EC=BD(2 cạnh tương ứng)
b) Xét tam giác ADB và tam giác ACE có:
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
AB=AC(tam giác ABC cân)
EC=BD(cmt)
Suy ra \(\Delta ADB=\Delta ACE\)(c.g.c)
=>AD=AE(2 cạnh tương ứng)
a, xét tam giác BDM và tam giác CEN có :
góc BDM = góc CEN = 90
BM = NC (Gt)
góc ABC = góc ACB do tam giác ABC cân tại A (Gt)
=> tam giác BDM = tam giác CEN (ch-gn)
b, tam giác BDM = tam giác CEN (câu a)
=> góc BMD = góc CNE (đn)
góc BMD + góc DMA = 180 (kb)
góc CNE + góc ENA = 180 (kb)
=> góc DMA = góc ENA (1)
có AB = AC do tam giác ABC cân tại A (gt)
BM = CN (gt)
BM + MA = AB
CN + NA = AC
=> MA = NA (2)
xét tam giác DMA và tam giác ENA có MD = EN do tam giác BDM = tam giác CEN (câu a)
(1)(2)
=> tam giác DMA = tam giác ENA (c-g-c)
=> AD = AE (đn)