K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
3 tháng 4 2017

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

3 tháng 4 2017

Kamishamunita

2 tháng 4 2017

3 ơi

Lưu ý :Đây là số

░░░░░░░░░░░░▄▄
░░░░░░░░░░░█░░█
░░░░░░░░░░░█░░█
░░░░░░░░░░█░░░█
░░░░░░░░░█░░░░█
███████▄▄█░░░░░██████▄
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█████░░░░░░░░░█
██████▀░░░░▀▀██████▀

2 tháng 4 2017

1+ ( -3) ơi nhé

k đc đưa các câu hỏi k liên quan tới toán

ai có chung cảm nghĩ vs m thì ùng hộ nhé

2 tháng 4 2017

k mình nha

2 tháng 4 2017

\(=\sqrt{\frac{6}{2}}\)

2 tháng 4 2017

= 1 em chỉ biết kết quả bằng 1 thôi chứ em ko biết trình bày vì em mới có lớp 6 thôi 

2 tháng 4 2017

\(pt\Leftrightarrow\left[\left(4x^3-x+3\right)^3-\frac{3}{4}\right]-\left(x^3+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(4x^3-x+3-\sqrt[3]{\frac{3}{4}}\right)\left[\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2\right]-\frac{4x^3+3}{4}=0\left(1\right)\)

Đặt \(A=\left(4x^3-x+3\right)^2+\sqrt[3]{\frac{3}{4}}\left(4x^3-x+3\right)+\left(\sqrt[3]{\frac{3}{4}}\right)^2=0\)

Dễ chứng minh \(A\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2>\frac{1}{2}\)

\(\left(1\right)\Leftrightarrow\left[\left(4x^3+3\right)-\left(x+\sqrt[3]{\frac{3}{4}}\right)\right]A-\frac{4x^3+3}{4}=0\)

\(\Leftrightarrow\left[\left(4x^3+3\right)-\frac{x^3+\frac{3}{4}}{B}\right]A-\frac{4x^3+3}{4}=0\)

\(\Leftrightarrow\left(4x^3+3\right)\left(A-\frac{A}{4B}-\frac{1}{4}\right)=0\)

Với \(B=x^2-\sqrt[3]{\frac{3}{4}}x+\left(\sqrt[3]{\frac{3}{4}}\right)^2\ge\frac{3}{4}\cdot\left(\sqrt[3]{\frac{3}{4}}\right)^2\Rightarrow4B>2\)

Ta chứng minh  \(A-\frac{A}{4B}-\frac{1}{4}>0\)

\(\Leftrightarrow A\cdot\frac{4B-1}{4B}-\frac{1}{4}>0\). Do \(4B>2\Rightarrow\frac{4B-1}{4B}>\frac{1}{2};A>\frac{1}{2}\)

Do đó pt có nghiệm duy nhất là \(4x^3+3=0\Leftrightarrow x=-\sqrt[3]{\frac{3}{4}}\)

2 tháng 4 2017

nick nek

phong141000

mk : 123456

nhớ tk mk nha

2 tháng 4 2017

toán ko game

lớp mẫu giáo ko lớp 9

linh tinh