Tính giá trị của biểu thức \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cứ bình phương 2 vế lên xong chuyển vế rồi bình phương lần nữa
TL
Mik ko chắc chắn lắm nha sai thì t i k cho mik'
Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'
Hok tốt
áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)
\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)
TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC
P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)
=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)
=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)
tạm thời mình làm a trước nhá
nối d với O ta có OD=OB=OA=R
=>tam giác AOD vuông
=>AD VUÔNG GÓC VỚI BM
Ta có:
\(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)
\(=1+1+\frac{2010}{2}+1+\frac{2009}{3}+...+1+\frac{1}{2011}\)
\(=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}\)
\(=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
Suy ra \(A=\frac{1}{2012}\).