Trong không gian với hệ tọa độ Oxyz, cho S(1;2;3) và các điểm A , B , C thuộc các trục Ox ,Oy , Oz sao cho hình chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc với nhau. Thể tích khối chóp S.ABC là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(\frac{3x\sqrt{x}+2x}{2x\sqrt{x}+x+\sqrt{x}-1}\)
Ta có:\(\left(a+b\right)^3=\overline{ab}^2\)là số chính phương nên \(a+b\)là số chính phương.
Đặt \(a+b=x^2\)với \(x\inℕ^∗\)
\(\Rightarrow\overline{ab}^2=x^6\)
\(\Rightarrow x^3=\overline{ab}< 100\)và \(\overline{ab}>9\)
\(\Rightarrow9< \overline{ab}< 100\)
\(\Rightarrow9< x^3< 100\)
\(\Rightarrow2< x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Với \(x=3\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=3^6=729=27^2=\left(2+7\right)^3\left(TM\right)\)
Với \(x=4\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=4^6=4096=64^2\ne\left(6+4\right)^3\left(KTM\right)\)
Vậy số cần tìm là 27.
P/S:\(\left(h\right)\)là hoặc
☺☻♥♦♣♠•◘○◙♂♀♪♫☼►◄↕‼¶§▬↨↑↓→←2◘↔▲▼ !"#◘%&'Ü)*+,-./0123;