K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

A {0; -2} B{2/a; 0} O y x

Độ dài đoạn thẳng OA là: I-2I=2

Độ dài đoạn thẳng OB là: 2/a

OA=2OB <=> 2=2x2/a => a=2/4 = 1/2

ĐS: a=1/2

7 tháng 4 2017

Nhầm: a=4/2=2

ĐS: a=2

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

7 tháng 4 2017

\(\sqrt{50}=5\sqrt{2}\) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=5\sqrt{2}\left(x,y\in Z^+\right)\)

Ta có: \(5\sqrt{2}=\sqrt{0}+5\sqrt{2}=\sqrt{2}+4\sqrt{2}=2\sqrt{2}+3\sqrt{2}\)

                         \(=5\sqrt{2}+\sqrt{0}=4\sqrt{2}+\sqrt{2}=3\sqrt{2}+2\sqrt{2}\)              

  • \(\sqrt{x}+\sqrt{y}=\sqrt{0}+5\sqrt{2}=\sqrt{0}+\sqrt{50}\Rightarrow x=0;y=50\left(KTMDK\right)\)   
  • \(\sqrt{x}+\sqrt{y}=\sqrt{2}+4\sqrt{2}=\sqrt{2}+\sqrt{32}\Rightarrow x=2;y=32\left(TMDK\right)\)
  •  \(\sqrt{x}+\sqrt{y}=2\sqrt{2}+3\sqrt{2}=\sqrt{8}+\sqrt{18}\Rightarrow x=8;y=18\left(TMDK\right)\)  
  • \(\sqrt{x}+\sqrt{y}=5\sqrt{2}+\sqrt{0}=\sqrt{50}+\sqrt{0}\Rightarrow x=50;y=0\left(KTMDK\right)\)     
  • \(\sqrt{x}+\sqrt{y}=4\sqrt{2}+\sqrt{2}=\sqrt{32}+\sqrt{2}\Rightarrow x=32;y=2\left(TMDK\right)\)
  • \(\sqrt{x}+\sqrt{y}=3\sqrt{2}+2\sqrt{2}=\sqrt{18}+\sqrt{8}\Rightarrow x=18;y=8\left(TMDK\right)\)

Vậy nghiệm của phương trình (x;y) = (2;32), (8;18), (32;2), (18;8)

6 tháng 4 2017

\(A=\frac{\left(1-\tan^2x\right)^2}{4\tan^2x}-\frac{1}{4\sin^2x.\cos^2x}\)

 \(=\frac{1}{\tan^22x}-\frac{1}{\sin^22x}\)

\(=\frac{\cos^22x}{\sin^22x}-\frac{1}{\sin^22x}\)

\(=\frac{\cos^22x-1}{\sin^22x}=\frac{-\sin^22x}{\sin^22x}=-1\)

Vậy A không phụ thuộc vào x

6 tháng 4 2017

em chỉ là học sinh lớp 6 thôi ko giúp đc gì cả

6 tháng 4 2017

VÀO CỐC CỐC THÌ SẼ BIẾT TRONG VONG 30 '   :)

6 tháng 4 2017

vào rồi thì mới đăng được chứ