K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: f(x)=A(x)+B(x)

\(=4x^3+5x^2-3x+4-4x^3-4x^2+2x-3\)

\(=x^2-x+1\)

b: \(f\left(0\right)=0^2-0+1=1\)

\(f\left(1\right)=1^2-1+1=1\)

c: Đặt f(x)=0

=>\(x^2-x+1=0\)

=>\(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\)

=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)(vô lý)

=>f(x) không có nghiệm

c: Đặt f(x)=2024

=>\(x^2-x+1=2024\)

=>\(x^2-x-2023=0\)(1)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-2023\right)=8093>0\)

Do đó: Phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{8093}}{2}\notin Z\\x_2=\dfrac{1+\sqrt{8093}}{2}\notin Z\end{matrix}\right.\)

=>f(x) luôn khác 2024 với mọi số nguyên x

Thay x=-2 và y=2 vào M, ta được:

\(M=2\cdot\left(-2\right)\cdot2-4\cdot\left(-2\right)+5\)

=-8+8+5

=5

\(x\left(x+11\right)-x^2+x=12\)

=>\(x^2+11x-x^2+x=12\)

=>12x=12

=>x=1

Câu 1: B

Câu 2: D

Câu 3: D

Câu 4: A

Câu 5: C

Câu 6: B

Câu 7:D

Câu 8: C

AH
Akai Haruma
Giáo viên
7 tháng 4 2024

Dấu ? định nghĩa là gì vậy bạn?

7 tháng 4 2024

là góc ạ

 

loading...  loading...  loading...  loading...  loading...  

6 tháng 4 2024

cũng dễ

6 tháng 4 2024

loading...  

a) Do ∆ADB vuông cân tại A (gt)

⇒ AB = AD

Do ∆AEC vuông cân tại A (gt)

⇒ AE = AC

Xét hai tam giác vuông: ∆ABC và ∆ADE có:

AB = AD (cmt)

AC = AE (cmt)

∆ABC = ∆ADE (hai cạnh góc vuông)

⇒ BC = DE (hai cạnh tương ứng)

b) Do ∆ADE vuông cân tại A (gt)

⇒ ∠ADB = ∠ABD = 45⁰

Do ∆AEC vuông cân tại A (gt)

⇒ ∠ACE = ∠AEC = 45⁰

⇒ ∠ACE = ∠ADB = 45⁰

Mà ∠ACE và ∠ADB là hai góc so le trong

⇒ DB // EC

c) Do AH ⊥ BC (gt)

⇒ MH ⊥ CN

Do AF ⊥ MC (gt)

⇒ NF ⊥ MC

∆CMN có:

MH ⊥ CN (cmt)

NF ⊥ MC (cmt)

⇒ MH và NF là hai đường cao của ∆CMN

Mà MH cắt NF tại A

⇒ CA là đường cao thứ ba của ∆CMN

⇒ CA ⊥ MN

d) Em xem lại đề nhé

6 tháng 4 2024

loading... 

a) ∆ABD có:

BA = BD (gt)

⇒ ∆ABD cân tại B

⇒ ∠BAD = ∠BDA

b) Do DK ⊥ AC (gt)

AB ⊥ AC (do ∆ABC vuông tại A)

⇒ DK // AB

⇒ ∠ADK = ∠BAD (so le trong)

Mà ∠BAD = ∠BDA (cmt)

⇒ ∠ADK = ∠BDA

⇒ ∠ADK = ∠HDA

Xét hai tam giác vuông: ∆ADK và ∆ADH có:

AD là cạnh chung

∠ADK = ∠HDA (cmt)

⇒ ∆ADK = ∆ADH (cạnh huyền - góc nhọn)

⇒ ∠DAK = ∠DAH (hai góc tương ứng)

⇒ ∠DAC = ∠DAH

⇒ AD là tia phân giác của ∠HAC

c) Do ∆ADK = ∆ADH (cmt)

⇒ AK = AH (hai cạnh tương ứng)

d) ∆CDK vuông tại K

⇒ CD là cạnh huyền nên là cạnh lớn nhất

⇒ CK < CD

Mà AK = AH (cmt)

BA = BD (cmt)

Cộng vế với vế, ta có:

CK + AK + AB < CD + AH + BD

⇒ AB + AC < BC + AH

a: Xet ΔBAD có BA=BD

nên ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔDHA vuông tại H)

\(\widehat{DAC}+\widehat{BAD}=90^0\)

mà \(\widehat{BDA}=\widehat{BAD}\)

nên \(\widehat{HAD}=\widehat{DAC}\)

=>AD là phân giác của góc HAC

c: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó: ΔAHD=ΔAKD

=>AH=AK

d: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AH\cdot BC=AB\cdot AC\)

\(\left(AB+AC\right)^2-\left(BC+AH\right)^2\)

\(=AB^2+AC^2+2\cdot AB\cdot AC-BC^2-AH^2-2\cdot BC\cdot AH\)

\(=BC^2+2\cdot AH\cdot BC-BC^2-2\cdot BC\cdot AH-AH^2\)

\(=-AH^2< 0\)

=>\(\left(AB+AC\right)^2< \left(BC+AH\right)^2\)

=>AB+AC<BC+AH