giải phương trình
3|x+3|-3x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C x D E y
Xét tam giác \(ABE\) \(\&ADC\)
\(BAE=ADC\)(góc chung)
\(\frac{AB}{CD}=\frac{8}{10}=\frac{4}{5};\frac{AE}{AC}=\frac{12}{15}=\frac{4}{5}\)
\(\Rightarrow tamgiácABE~tamgiacADC\left(C.G.C\right)\)
b) Từ tam giác \(ABE\) \(~\)tam giác \(ADC\)\(\Rightarrow\frac{AB}{CD}=\frac{BE}{DC}\Rightarrow DC=\frac{AD\cdot BE}{AB}=\frac{10\cdot10}{8}=12,5\)
c) Từ tam giác \(ABE~\)tam giác \(ADC\left(cmt\right)\)
\(\Rightarrow\frac{S_{ABE}}{S_{ADC}}=\left(\frac{AB}{AD}\right)^2=\left(\frac{8}{10}\right)^2\left(\frac{4}{5}\right)^2=\frac{16}{25}\)
a) \(ĐKXĐ:\) \(x\ne\pm1\)
\(A=\left(\frac{3x^2-4}{x^2-1}-\frac{2}{1-x}-\frac{2}{x+1}\right):\left(\frac{1-x}{x+1}\right)\)
\(=\left(\frac{3x^2-4}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+1}{1-x}\)
\(=\frac{3x^2-4+2x+2-2x+2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)
\(=\frac{3x^2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)
\(=-\frac{3x^2}{\left(x-1\right)^2}\)
\(\frac{3x-4}{5}+\frac{x}{6}=\frac{x+1}{2}\)
\(\Leftrightarrow\)\(\frac{6\left(3x-4\right)}{30}+\frac{5x}{30}=\frac{15\left(x+1\right)}{30}\)
\(\Rightarrow\)\(6\left(3x-4\right)+5x=15\left(x+1\right)\)
\(\Leftrightarrow\)\(18x-24+5x=15x+15\)
\(\Leftrightarrow\)\(8x=39\)
\(\Leftrightarrow\)\(x=\frac{39}{8}\)
Vậy...
a) Ta có: \(\frac{4}{8}=\frac{5}{10}=\frac{6}{12}\left(=\frac{1}{2}\right)\)
hay \(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}\)
\(\Rightarrow\)\(\Delta A'B'C'~\Delta ABC\)
b) \(\Delta A'B'C'~\Delta ABC\)
\(\Rightarrow\)\(\frac{P_{A'B'C'}}{P_{ABC}}=\frac{A'B'}{AB}=\frac{8}{4}=2\)
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
\(a)\) Ta có :
\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)
+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)
+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\)
+) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)
Chúc bạn học tốt ~
Ta có bảng xét dấu :
+) Nếu \(x< -3\Leftrightarrow|x+3|=-x-3\)
\(pt\Leftrightarrow3\left(-x-3\right)-3x=-1\)
\(\Leftrightarrow-3x-9-3x=-1\)
\(\Leftrightarrow-6x=8\)
\(x=\frac{-4}{3}\) ( loại )
+) Nếu \(x\ge-3\Leftrightarrow|x+3|=x+3\)
\(pt\Leftrightarrow3\left(x+3\right)-3x=-1\)
\(\Leftrightarrow3x+9-3x=-1\)
\(\Leftrightarrow9=-1\) ( vô lí )
Vậy phương trình vô nghiệm