♾➖4️⃣=?????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
\(=\sqrt[3]{\left(\sqrt{3}+1\right)^3}-\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
a/ \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(1+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+1+2\sqrt{2}=4\)
b/ \(\sqrt{16+2\sqrt{63}}-\sqrt{16-6\sqrt{7}}\)
\(=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(3-\sqrt{7}\right)^2}\)
\(=3+\sqrt{7}-3+\sqrt{7}=2\sqrt{7}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
\(=\sqrt{17-3\sqrt{16.2}}+\sqrt{17-3\sqrt{16.2}}\)
\(=\sqrt{17-12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9-2.3.2\sqrt{2}+8}+\sqrt{9-2.3.2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3-2\sqrt{2}\)
\(=6-4\sqrt{2}\)
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=4+2\sqrt{2}-4+2\sqrt{2}=4\sqrt{2}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Ta có:
\(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)
\(=1+1+\frac{2010}{2}+1+\frac{2009}{3}+...+1+\frac{1}{2011}\)
\(=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}\)
\(=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
Suy ra \(A=\frac{1}{2012}\).
TL:
vẫn = vô cực
-HT-
Đung thì mình kích