Cho tam giác ABC, \widehat{A}=70^oA=70o. M là trung điểm BC. Phân giác góc AMB cắt AB tại E, phân giác góc AMC cắt AC tại F. Khi đó, khẳng định nào dưới đây là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó:\) \(x+y=3\)
\(\dfrac{x}{2}+\dfrac{x}{2}+y=3\)
Áp dụng BĐT Cô si cho 3 số, ta có:
\(3=\left(\dfrac{x}{2}+\dfrac{x}{2}+y\right)\ge3.^3\sqrt{\dfrac{x}{2}.\dfrac{x}{2}.y}=3.^3\sqrt{\dfrac{x^2y}{4}}\)
⇒\(1\ge^3\sqrt{\dfrac{x^2y}{4}}\)
⇒\(1\ge\dfrac{x^2y}{4}\Leftrightarrow x^2y\le4\)
bgfsdrtuywHFG 8UNHJDF8HERHYVGAEURYGGHVNIUAEGHNA9W7HVTGAN789RWHTFG78Wdx h8QJ7HDCGN87SDHFGCNSDJFCHSIUDHFCGXNIDUFV GHSRIUGIJHVNSAEUKGFHNIAUHDFGNCIAUSDFTGAIUUSDFNGCNA87HGAYDSFFHGUIBYHDSFVGISNUADFVHNUSDERYFCGNIAUSHGFCIUAHYNCFGVIASDUHCGFIUHAGDF8C7VEASRYJGVN879USDHBGH9MI8ERYHGJUI9DHFG BUIDZFH BVI7AUD7GVI7NAERUGJV8N7AERU8JGYVNI78SCGHTJEIUNTGHSNI7YDGUH NVSI7FGCNBIUSAJFGVHBMIO8VHKMISURDVI8MRVUEMHBISODUJNGMCOISDFJHBG8UZVXBGOCERJMBFJMHASBFDIUMCW NFCKJIBSIUDF9CU HMZSDFUIYGNMCFSD8RG N,MCEA IRJGNUDH BGISDUFHV 8AJMBUG7 UYRBMGUIHBXCMGJIUHSBMZDFG JNBHIUHJFNMSGDHUIADFSBTXG6CY7S
\(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right).\left(1+\frac{1}{z}\right)=2\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1+\frac{1}{x}\le1+\frac{1}{y}\le1+\frac{1}{z}\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)\le \left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow2\le\left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow1+\frac{1}{z}\ge\sqrt[3]{2}\)
\(\Rightarrow\frac{1}{z}\ge\sqrt[3]{2}-1\)
\(\Rightarrow z\le\frac{1}{\sqrt[3]{2}-1}< 4\)
Mà z thuộc N* \(\Rightarrow z\in\left\{1;2;3\right\}\)
TH1 : \(z=1\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{1}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1\)
Ta có : \(1+\frac{1}{x}>1;1+\frac{1}{y}>1\)\(\Rightarrow\left(\frac{1}{x}+1\right)\left(1+\frac{1}{y}\right)>1\left(lọai\right)\)
TH2 : \(z=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{2}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
Ta có : \(\left(1+\frac{1}{y}\right)^2\ge\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
\(\Rightarrow1+\frac{1}{y}\ge\sqrt{\frac{4}{3}}\)
\(\Rightarrow\frac{1}{y}\ge\frac{2\sqrt{3}}{3}-1\)
\(\Rightarrow y\le\frac{1}{\frac{2\sqrt{3}}{3}-1}< 7\)
\(\Rightarrow y\in\left\{1;2;3;4;5;6\right\}\)
Nếu y = 1 \(\Rightarrow\left(1+1\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -3 ( loại )
Nếu y = 2 \(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -9 ( loại )
Nếu y = 3 \(\Rightarrow\left(1+\frac{1}{3}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > \(x\in\varnothing\)
Nếu y = 4 \(\Rightarrow\left(1+\frac{1}{4}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 15 ( tm )
Nếu y = 5 \(\Rightarrow\left(1+\frac{1}{5}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 9 ( tm )
Nếu y = 6 \(\Rightarrow\left(1+\frac{1}{6}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 7 ( tm )
TH3 : z =3 thì bạn làm tương tự nhé
ĐKXĐ : \(x\ne-2,x\ne2\)
\(\frac{x+1}{x-2}+\frac{5}{2+x}=\frac{12}{x^2-4}+1\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{x^2-4}-\frac{5\left(x-2\right)}{x^2-4}=\frac{12}{x^2-4}+\frac{x^2-4}{x^2-4}\)
\(\Leftrightarrow x^2+3x+2-5x+10=8+x^2\)
\(\Leftrightarrow12-2x=8\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy phương trình vô nghiệm
\(\frac{x+1}{x-2}+\frac{5}{2+x}=\frac{12}{x^2-4}+1\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow\frac{x+1}{x-2}+\frac{-5}{x-2}=\frac{12}{\left(x-2\right)\left(x+2\right)}+1\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{12}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)-5\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+2x+x+2-5x-10=12+x^2+2x-2x-4\)
\(\Leftrightarrow x^2-2x-8=8+x^2\)
\(\Leftrightarrow x^2-2x-8-8-x^2=0\)
\(\Leftrightarrow-2x-16=0\)
\(\Leftrightarrow-2x=0+16\)
\(\Leftrightarrow-2x=16\)
\(\Leftrightarrow x=16:\left(-2\right)\)
\(\Leftrightarrow x=-8\)(TMĐKXĐ)
Vậy S = \(\left\{-8\right\}\)
a, Ta có \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=1\end{cases}}\)
Thay x = 1 ta được \(A=\frac{1+1}{2-1}=2\)
b, đk x khác -2 ; -1
\(B=\frac{2x}{x+1}+\frac{3}{x-2}-\frac{2x^2+1}{x^2-x-2}\)
\(=\frac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}=-\frac{1}{x+1}\)
c, \(P=AB=\frac{-x\left(x+1\right)}{\left(x+1\right)\left(2-x\right)}=\frac{x}{x-2}=\frac{x-2+2}{x-2}=1+\frac{2}{x-2}\)
`Answer:`
\(\frac{x-2}{x+2}-\frac{x^2+2}{x^2+2x}=\frac{3}{x}\) ĐKXĐ: \(x\ne0;x\ne-2\)
\(\Leftrightarrow\frac{x\left(x-2\right)}{x\left(x+2\right)}-\frac{x^2+2}{x\left(x+2\right)}=\frac{3\left(x+2\right)}{x\left(x+2\right)}\)
\(\Rightarrow x\left(x-2\right)-\left(x^2+2\right)=3\left(x+2\right)\)
\(\Leftrightarrow x^2-2x-x^2-2=3x+6\)
\(\Leftrightarrow x^2-x^2-2x-3x=2+6\)
\(\Leftrightarrow-5x=8\)
\(\Leftrightarrow x=-\frac{8}{5}\)
Ghi đúng môn học nhé
a. PTHH: `HCl+NaOH->NaCl+H_2O`
0,6 0,6 0,6 mol
b. `300ml=0,3l`
`n_{HCl}=C_M . V=2.0,3=0,6mol`
\(\rightarrow n_{NaOH}=n_{HCl}=0,6mol\)
\(\rightarrow m_{NaOH}=n.M=0,6.40=24g\)
\(\rightarrow m_{dd_{NaOH}}=\frac{m.100\%}{C\%}=\frac{24.100\%}{20\%}=120g\)
c. Theo phương trình \(n_{NaCl}=n_{HCl}=0,6mol\)
\(\rightarrow m_{NaCl}=n.M=0,6.58,5=35,1g\)
ta chuyển vế ,đc PT sau:
\(x^2+\left(m-7\right)x+\frac{12}{x}-m^2+3m=0\)
\(\Leftrightarrow x^2+mx-7x+\frac{12}{x}-m^2+3m=0\left(1\right)\)
thay x=3 vào PT (1) ta có:
\(\left(1\right)\Leftrightarrow9+3m-3.7+\frac{12}{3}-m^2+3m=0\)
\(\Leftrightarrow-m^2+6m-8=0\)
\\(\Leftrightarrow m^2-6m+8=0\)
\(\Leftrightarrow m^2-6m+9-1=0\)
\(\Leftrightarrow\left(m-3\right)^2-1=0\)
\(\Leftrightarrow\left(m-4\right).\left(m-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-4=0\\m-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=4\\m=2\end{cases}}}\)