K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)

Ta có: 

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM

22 tháng 4 2017

kẻ tiếp tuyến tại A bạn nhé

22 tháng 4 2017

Ròi s nữa bn chỉ mìk vs đi

22 tháng 4 2017

bài này nghiệm đẹp :), chuyển vế r` bình lên thôi :))

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)\left(4x^2+8x-25\right)=0\)

cái \(4x^2+8x-25=0\) vô nghiệm r` 

Còn x=2; x=-4 là nghiệm :)

23 tháng 4 2017

Nhầm rồi nha bạn.

4x2 + 8x - 25 = 0 có nghiệm nhé. Nghiệm của nó không thuộc tập xác định thôi chứ không phải là nó vô nghiệm đâu b.

22 tháng 4 2017

bạn ko hỏi như vậy nhé 

ai thấy đúng tk nha

22 tháng 4 2017

có tôi

22 tháng 4 2017

tk ủng hộ đi

22 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(T=\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{xy+xz}\)

Từ \(x+y+z=3\Rightarrow y+z=4-x\)

\(\Rightarrow T\ge\frac{4}{xy+xz}=\frac{4}{x\left(y+z\right)}=\frac{4}{x\left(4-x\right)}=\frac{4}{-x^2+4x}\)

Lại có: \(-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)

\(\Rightarrow T\ge\frac{4}{-x^2+4x}\ge\frac{4}{4}=1\)

Đẳng thức xảy ra khi \(x=2;y=z=1\)

23 tháng 7 2018

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=1\).

23 tháng 4 2017

Đề thi HK2 quận Bình Tân hả bạn? :))