K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

hình như bn viết thiếu đề

3 tháng 5 2018

Ta có: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)

\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

3 tháng 5 2018

a) Ta có: \(A=\left|x\right|+\left|x-2\right|\ge\left|x+2-x\right|=2\left(đpcm\right)\)

Giá trị nhỏ nhất của A = 2

Dấu "=" xảy ra, chẳng hạn x = 0

b) Ta có: \(B=\left|x-1\right|+\left|x-2\right|\)

\(B=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\left(1\right)\)

Tương tự ta cũng có:

\(\left|x-2\right|+\left|x-3\right|\ge1\left(2\right)\)

\(\Leftrightarrow\left|x-3\right|+\left|x-1\right|\ge2\left(3\right)\)

Cộng vế với vế ( 1 ) và ( 3 ) và chia 2 vế cho 2:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)

Giá trị nhỏ nhất của B bằng 2 

Dấu "=" xảy ra, đồng thời ở ( 1 ); ( 2 ); ( 3 ) chẳng hạn x = 3 

3 tháng 5 2018

a, min A = 2

b, min B = 4

3 tháng 5 2018

\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)

\(\Leftrightarrow\left(m^2-2+\frac{1}{m^2}\right)+\left(n^2-2+\frac{1}{n^2}\right)+\left(p^2-2+\frac{1}{p^2}\right)=0\)

\(\Leftrightarrow\left(m-\frac{1}{m}\right)^2+\left(n-\frac{1}{n}\right)^2+\left(p-\frac{1}{p}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}m=\frac{1}{m}\\n=\frac{1}{n}\\p=\frac{1}{p}\end{cases}}\Rightarrow m=n=p=1\)

3 tháng 5 2018

bạn giải dùm mình bài này nhé Tìm x biết: 2+2+2+23+24+...+22014=2x.  Ai giúp mình giải bài này với

3 tháng 5 2018

P/S: Khỏi làm nữa nhé

4 tháng 5 2018

\(A=111.....111.10^{2017}+2222.....2222.10+5\)

\(=\frac{10^{2015}-1}{9}.10^{2017}+20.\frac{10^{2016}-1}{9}+5\)

\(=\frac{10^{4032}-10^{2017}+2.10^{2017}-20+45}{9}\)

\(=\frac{10^{4032}+2.5.10^{2016}+25}{9}\)

\(=\left(\frac{10^{2016}+5}{3}\right)^2\) là số chính phương (ĐPCM)

16 tháng 5 2019

đề bài bảo có 2005 số 2 nên phải là 10^2006 chứ bạn, mấy cái còn lại cũng thế!

4 tháng 5 2018

\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))

Vậy BĐT đã được chứng minh

4 tháng 5 2018

Từ đề bài \(\Rightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\) (AM-GM)

Tương tự \(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\end{cases}}\)

Nhân các vế tương ứng của các bđt vừa cm đc ta có :

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)\(\Rightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

3 tháng 5 2018

A = (x^2 - 2.1/2.x +1/4) + 3/4          =     (x - 1/2)^2 + 3/4

Vì (x - 1/2)^2 >= 0 với mọi x 

Nên  A >= 3/4 KHI x = 1/2