Cho tam giác ABC vuông tại B , AB = 6 cm , BC = 8 cm . Đường cao BH , phân giác của góc A cắt BC tại D
a, CM tam giác ABC đồng dạng với tam giác BHC
b, Tính BH , BD , CD
c , Từ H kẻ GM vuông góc với AB , HN vuông góc với AC . Cm CM.AB = BN.AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) với mọi a, b, c
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge ab+bc+ac+2ab+2bc+2ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
a) Xét \(\Delta AHC\)và \(\Delta DHB\)có:
\(\widehat{AHC}=\widehat{DHB}=90^0\)
\(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)
suy ra: \(\Delta AHC~\Delta DHB\) (g.g)
b) Xét \(\Delta ABC\)và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)
suy ra: \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AB^2=BD.AC\)
c) \(\Delta HAC\)vuông tại H có HN là đường trung tuyến
\(\Rightarrow\)\(HN=AN=NC\)
\(\Rightarrow\) \(\Delta NHC\)cân tại N \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)
Tương tự: \(\widehat{MBH}=\widehat{MHB}\)
mà \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)
\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)
mà \(\widehat{HCN}=\widehat{NHC}\) (cmt)
\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)
\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)
\(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)
Vậy M, N, H thẳng hàng
Gọi số HS lớp 8A và 8B lần lượt là a, b ( H/S) \(\left(a,b\inℕ^∗\right)\)
Theo bài ra ta có: \(\hept{\begin{cases}a+b=93\\\frac{1}{4}a-\frac{1}{7}b=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=93-b\\\frac{1}{4}a-\frac{1}{7}b=4\end{cases}}\)
\(\Rightarrow\frac{1}{4}\left(93-b\right)-\frac{1}{7}b=4\)
\(\frac{93}{4}-\frac{1}{4}b-\frac{1}{7}b=4\)
\(\frac{11}{28}b=\frac{77}{4}\)
\(b=49\left(TM\right)\)
\(\Rightarrow a=44\left(TM\right)\)
Vậy số H/S lớp 8A là 44 H/S
số H/S lớp 8B là 49 H/S
gọi x là số học sinh 8A ( x thuộc N* ) =>> 1/4 số học sinh 8A là x/4
93-x là số học sinh 8B =>> 1/7 số học sinh 8B là 93-x/7
ta có phương trình
\(\frac{x}{4}\)-\(\frac{93-x}{7}\)=4
giải phương trình đc x=44
vậy học sinh lớp 8A=44 em
8B= 49 em
Ta có: \(a^3+b^3+c^3-a^2+b^2+c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a0\\1-b\ge0\\1-c\ge0\end{cases}}\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu "=" xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)\)
Kết hợp với giả thiết
=> a,b,c hoán vị 1;0;0
=> S= 1
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
x2 + 4x + 2018
=> x2 + 2×2x +22 + 2014
=> (x+2)2 + 2014
=> (x+2)2 >= 0
VÀ 2014 > 0
=> (x+2) + 2014 > 0
=>x2 + 4x +2018 ko có nghiệm
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Ta có : \(x^2+4x+2018\)
\(=\left(x^2+4x+4\right)+2014\)
\(=\left(x+2\right)^2+2014\)
Mà \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\) đa thức trên luôn lớn hơn hoặc bằng 2014
Vậy đa thức trên vô nghiệm
a.
Xét tam giác DAB và tam giác DEC
có:\(\widehat{A}=\widehat{E}=90^O\)
\(\widehat{D_1}=\widehat{D_3}\left(đđ\right)\)
\(\Rightarrow\Delta DAB~\Delta DEC\left(g-g\right)\)
b.
* Ta có :\(\Delta DAB~\Delta DEC\) (câu a)
\(\Rightarrow\widehat{ECD}=\widehat{B_1}\)
mà \(\widehat{B_1}=\widehat{B_2}\) ( vì Bx là tia phân giác)
\(\Rightarrow\widehat{ECD}=\widehat{B_2}\) hay \(\widehat{ECD}=\widehat{EBC}\)
*Xét tg vuông ECD và tg vuông EBD
có :\(\widehat{ECD}=\widehat{EBC}\) (cm trên)
\(\Rightarrow\Delta ECD~\Delta EBD\left(g.g\right)\)
c.Ta có Bx là tia phân giác của góc ABC
\(\Rightarrow\frac{AB}{AD}=\frac{BC}{DC}\)(Theo t/c đường phân giác trong tam giác)
\(\Leftrightarrow\frac{AB}{BC}=\frac{AD}{DC}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Leftrightarrow\frac{AB}{AB+BC}=\frac{AD}{AD+DC}\)
\(\Leftrightarrow\frac{2}{2+5}=\frac{AD}{20}\Rightarrow AD=\frac{2\cdot20}{2+5}\approx5.7\)cm
mà \(AC=AD+DC\Rightarrow DC=AC-AD=20-5.7=14.3cm\)
please , giúp mình vs ạ
( tự vẽ hình nha )
a) Xét tam giác ABC và tam giác BHC có :
\(\widehat{ABC}=\widehat{BHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác BHC ( g-g )
b) Áp dụng định lí Py-ta-go cho tam giác ABC vuông tại B ta có :
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=100\)
\(\Leftrightarrow AC=10\left(cm\right)\)
Do tam giác ABC đồng dạng với tam giác BHC ta có :
\(\frac{AB}{BH}=\frac{AC}{BC}\Leftrightarrow\frac{6}{BH}=\frac{10}{8}\)
\(\Leftrightarrow BH=4,8\left(cm\right)\)
Do AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{8}{16}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}BD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)
c) ( đề sai oy )