Cho x , y , z là 3 số thực dương thỏa mãn x2 + y2 + z2 = 2 . CMR :
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z
nhận thấy x=0 không là nghiệm của phương trình ,chia cả 2 vế của phương trình cho x2 ta được:
\(x^2+ax+b+\frac{a}{x}+\frac{1}{x^2}=0\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+a\left(x+\frac{1}{x}\right)+b=0\)
đặt \(m=x+\frac{1}{x}\),phương trình trở thành \(m^2-2+am+b=0\Leftrightarrow m^2-2=-am-b\Leftrightarrow\left(m^2-2\right)^2=\left(am+b\right)^2\)
Áp dụng bất đẳng thức bunyakovsky :\(\left(m^2-2\right)^2=\left(am+b\right)^2\le\left(m^2+1\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(m^2-2\right)^2}{m^2+1}=\frac{m^4-4m^2+4}{m^2+1}=m^2-5+\frac{9}{m^2+1}\)
\(=m^2+1+\frac{25}{m^2+1}-\frac{16}{m^2+1}-6\)
Áp dụng bất đẳng thức AM-GM: \(m^2+1+\frac{25}{m^2+1}\ge10\)
\(a^2+b^2\ge4-\frac{16}{m^2+1}\)
lại có \(m^2=\left(x+\frac{1}{x}\right)^2\ge4\)(AM-GM)
nên \(a^2+b^2\ge4-\frac{16}{5}=\frac{4}{5}\)
đẳng thức xảy ra khi \(\hept{\begin{cases}a=-\frac{4}{5}\\b=-\frac{2}{5}\end{cases}}\)
b/ Theo vi - et thì:
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có:
\(A=\frac{1}{x^2_1x_2+\left(m-1\right)x_2+1}-\frac{4}{x_1x^2_2+\left(m-1\right)x_1+1}\)
\(=\frac{1}{\left(m-1\right)x_1+\left(m-1\right)x_2+1}-\frac{4}{\left(m-1\right)x_2+\left(m-1\right)x_1+1}\)
\(=\frac{1}{m\left(m-1\right)+1}-\frac{4}{m\left(m-1\right)+1}\)
\(=-\frac{3}{m^2-m+1}=-\frac{3}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\)
\(\ge-\frac{3}{\frac{3}{4}}=-4\)
Vậy GTNN là A = - 4 đạt được khi \(m=\frac{1}{2}\)
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
để phương trình có 2 nghiệm phân biệt thì delta' > 0 \(\Leftrightarrow\left(m-2\right)^2+m^2>0\)ta được 1 phương trình luôn lớn hơn 0 vơi mọi m
áp dụng hệ thức viet vào phương trình ta được \(\hept{\begin{cases}x1+x2=-2\left(m-2\right)\\x1.x2=-m^2\end{cases}}\)
ta có |x1|-|x2|=6 \(\Leftrightarrow\)x12+x22-2|x1.x2|-6=0 \(\Leftrightarrow\)(x1+x2)2-2x1x2-2|x1x2|-6=0 \(\Leftrightarrow\left(-2\left(m-2\right)\right)^2+2m^2-2\left|-m^2\right|-6=0\)
giải phương trình có chứa dâu giá trị tuyệt đối rồi đối chiếu với điều kiện để chọn và tìm m phù hợp
\(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)