K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

và hồi lại năng lượng

11 tháng 5 2018

khi ngủ phải nhắm mắt để mắt được nghỉ ngơi

11 tháng 5 2018

a)  Xét  \(\Delta ABC\)và   \(\Delta MDC\)có:

      \(\widehat{C}\) chung

     \(\widehat{CAB}=\widehat{CMD}=90^0\)

suy ra:   \(\Delta ABC~\Delta MDC\)(g.g)

b)  Xét  \(\Delta BMI\)và    \(\Delta BAC\)có:

         \(\widehat{B}\)chung

        \(\widehat{BMI}=\widehat{BAC}=90^0\) 
suy ra:   \(\Delta BMI~\Delta BAC\) (g.g)

\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\) 

\(\Rightarrow\)\(BI.BA=BC.BM\)

c)    \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b)   \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)

Xét  \(\Delta BIC\)và    \(\Delta BMA\)có:

     \(\widehat{B}\)chung

    \(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)

suy ra:   \(\Delta BIC~\Delta BMA\) (g.g)

\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\)    (1)

c/m:  \(\Delta CAI~\Delta BKI\) (g.g)   \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)

Xét  \(\Delta IAK\)và     \(\Delta ICB\)có:

      \(\widehat{AIK}=\widehat{CIB}\) (dd)

      \(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)

suy ra:   \(\Delta IAK~\Delta ICB\)(g.g)

\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2) 

Từ (1) và (2) suy ra:  \(\widehat{IAK}=\widehat{BAM}\)

hay  AB là phân giác của \(\widehat{MAK}\)

d)  \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)

mà   \(\widehat{MAB}=\widehat{ICB}\) (câu c)  

\(\Rightarrow\)\(\widehat{ICB}=45^0\)

\(\Delta CKB\)vuông tại K có  \(\widehat{KCB}=45^0\)

\(\Rightarrow\)\(\widehat{CBK}=45^0\)

\(\Delta MBD\) vuông tại M  có   \(\widehat{MBD}=45^0\)

\(\Rightarrow\)\(\widehat{MDB}=45^0\)

hay   \(\Delta MBD\)vuông cân tại M

\(\Rightarrow\)\(MB=MD\)

\(\Delta ABC\) có  AM là phân giác 

\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)

ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

ÁP dụng tính chất dãy tỉ số = nhau ta có:

    \(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)

suy ra:   \(\frac{MB}{AB}=\frac{5}{7}\)  \(\Rightarrow\)\(MB=\frac{40}{7}\)

mà   \(MB=MD\) (cmt)

\(\Rightarrow\)\(MD=\frac{40}{7}\)

Vậy  \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)

\(\Delta ABC\) có  AM  là phân giác

\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)

\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)

Vậy   \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)

11 tháng 5 2018

C A M B K D I

a)  xét \(\Delta ABC\)  và \(\Delta MDC\)  có 

\(\widehat{ACB}=\widehat{MCD}\)  ( góc chung)

\(\widehat{CAB}=\widehat{CMD}=90^0\)  ( giả thiết )

\(\Rightarrow\Delta ABC\infty\Delta MDC\)  \(\left(g.g\right)\)

b) xét  \(\Delta BIM\) và \(\Delta BCA\)  có 

\(\widehat{IBM}=\widehat{CBA}\)  ( góc chung )

\(\widehat{BMI}=\widehat{BAC}=90^0\)

\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)

\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)

\(\Rightarrow BI.BA=BM.BC\)

P/S tạm thời 2 câu này trước đi đã 

11 tháng 5 2018

Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{16}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{\sqrt{3}}\)

11 tháng 5 2018

Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)

\(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)

\(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)

\(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\)  \(\ge0\)

Do a,b,c > 0 

11 tháng 5 2018

Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Đẳng thức xảy ra <=> a = b = c 

11 tháng 5 2018

sử dụng bài toán phụ \(3\left(a^2+b^2+c^2\right)\ge\) \(\left(a+b+c\right)^2\)

dễ thế đéo biết làm

11 tháng 5 2018

sử dụng bài toán phụ:

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) 

dễ thế mà không biết làm

 

11 tháng 5 2018

a)  Xét  \(\Delta OAB\)và   \(\Delta OCD\)có:

      \(\widehat{OAB}=\widehat{OCD}\) (slt)

      \(\widehat{OBA}=\widehat{ODC}\) (slt)

suy ra:   \(\Delta OAB~\Delta OCD\)  (g.g)

\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)

\(\Rightarrow\)\(OA.OD=OB.OC\)

b)  \(\Delta OAB~\Delta OCD\)  

\(\Rightarrow\)\(\frac{OA}{AC}=\frac{AB}{CD}\)

\(\Rightarrow\)\(OA=\frac{OC.AB}{CD}=3\)

\(\Rightarrow\)\(AC=OA+OC=9\)

\(\Delta AEO~\Delta ADC\)  ( do OE // DC )

\(\Rightarrow\)\(\frac{OE}{DC}=\frac{OA}{AC}\)  \(\Rightarrow\) \(OE=\frac{OA.DC}{AC}=\frac{10}{3}\)