Thực hiện phép tính hợp lí nếu có thể:
a) 4/5 x 11/7 - 4/5 x 1/7
b) 7/13 x 25/6 - 7/13 x -1/6
c) 4/13 x 5/11 + 4/13 x 6/11 - 4/13
giúp mình với, mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{4}{5}\) \(\times\) \(\dfrac{11}{\dfrac{-4}{5}\times\dfrac{1}{7}}\) = \(\dfrac{-11}{\dfrac{1}{7}}\) = -77
Để:
\(A\inℤ\)
\(\Leftrightarrow n+8⋮2n-4\)
\(n+8⋮2\left(n-2\right)\)
\(n+8⋮n+2\)
\(n-2+10⋮n-2\)
\(10⋮n-2\)
\(\Rightarrow n-2\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;7;-3;12;-8\right\}\)
Vậy \(\Rightarrow n\in\left\{3;1;4;0;7;-3;12;-8\right\}\) để \(A\) nguyên.
1; \(\dfrac{7}{15}\) + \(\dfrac{8}{15}\) = \(\dfrac{7+8}{15}\) = \(\dfrac{15}{15}\) = 1
2; \(\dfrac{1}{2}\) - \(\dfrac{1}{14}\) = \(\dfrac{1.7}{2.7}\) - \(\dfrac{1}{14}\) = \(\dfrac{7-1}{14}\) = \(\dfrac{6}{14}\) = \(\dfrac{3}{7}\)
3; \(\dfrac{8}{28}\) + \(\dfrac{-21}{35}\) = \(\dfrac{2}{7}\) + \(\dfrac{-21}{35}\)= \(\dfrac{10}{35}\) + \(\dfrac{-21}{35}\) = \(\dfrac{-11}{35}\)
4; \(\dfrac{3}{4}\) + \(\dfrac{2}{3}\) - \(\dfrac{9}{6}\) = \(\dfrac{9}{12}\) + \(\dfrac{8}{12}\) - \(\dfrac{18}{12}\) = \(\dfrac{9+8-18}{12}\) = \(\dfrac{-1}{12}\)
5; \(\dfrac{11}{36}\)- \(\dfrac{-7}{-24}\) = \(\dfrac{22}{72}\) + \(\dfrac{21}{72}\) = \(\dfrac{53}{72}\)
6; \(\dfrac{4}{15}\) + \(\dfrac{9}{5}\) - \(\dfrac{7}{3}\) = \(\dfrac{4}{15}\) + \(\dfrac{27}{15}\) - \(\dfrac{35}{15}\) = \(\dfrac{-4}{15}\)
a; P = \(\dfrac{6n+5}{3n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 6n + 5 và 3n + 2 là d
Ta có: \(\left\{{}\begin{matrix}6n+5\\3n+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+5⋮d\\2.\left(3n+2\right)⋮d\end{matrix}\right.\)
6n + 5 - 2.(3n + 2) ⋮ d
6n + 5 - 6n - 4 ⋮ d
(6n - 6n) + 1 ⋮ d
1 ⋮ d
d = 1
Hay P = \(\dfrac{6n+5}{3n+2}\) là phân số tối giản
b; P = \(\dfrac{6n+5}{3n+2}\) ( n \(\in\) N)
P = \(\dfrac{6n+4+1}{3n+2}\)
P = \(\dfrac{2.\left(3n+2\right)}{\left(3n+2\right)}\) + \(\dfrac{1}{3n+2}\)
P = 2 + \(\dfrac{1}{3n+2}\)
Pmax ⇔ \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất
vì n \(\in\) N; \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất khi và chỉ khi
3n + 2 = 1 ⇒ n = - \(\dfrac{1}{3}\) (loại)
Vậy không có giá trị nào của n là số tự nhiên để P đạt giá trị lớn nhất.
a) \(\dfrac{4}{5}\times\dfrac{11}{7}-\dfrac{4}{5}\times\dfrac{1}{7}\)
\(=\dfrac{4}{5}\times\left(\dfrac{11}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{4}{5}\times\dfrac{10}{7}\)
\(=\dfrac{4}{1}\times\dfrac{2}{7}\)
\(=\dfrac{8}{7}\)
b) \(\dfrac{7}{13}\times\dfrac{25}{6}-\dfrac{7}{13}\times\dfrac{-1}{6}\)
\(=\dfrac{7}{13}\times\left(\dfrac{25}{6}-\dfrac{-1}{6}\right)\)
\(=\dfrac{7}{13}\times\dfrac{26}{6}\)
\(=\dfrac{7}{1}\times\dfrac{2}{6}\)
\(=\dfrac{14}{6}=\dfrac{7}{3}\)
c) \(\dfrac{4}{13}\times\dfrac{5}{11}+\dfrac{4}{13}\times\dfrac{6}{11}-\dfrac{4}{13}\)
\(=\dfrac{4}{13}\times\left(\dfrac{5}{11}+\dfrac{6}{11}\right)-\dfrac{4}{13}\)
\(=\dfrac{4}{13}\times\dfrac{11}{11}-\dfrac{4}{13}\)
\(=\dfrac{4}{13}\times\dfrac{11}{11}-\dfrac{4}{13}\times\dfrac{11}{11}\)
\(=\dfrac{4}{3}\times\left(\dfrac{11}{11}-\dfrac{11}{11}\right)\)
\(=\dfrac{4}{3}\times0=0\)
a)\(\dfrac{4}{5}\cdot\dfrac{11}{7}-\dfrac{4}{5}\cdot\dfrac{1}{7}=\dfrac{4}{5}.\left(\dfrac{11}{7}-\dfrac{1}{7}\right)=\dfrac{4}{5}.\left(\dfrac{11-1}{7}\right)=\dfrac{4}{5}\cdot\dfrac{10}{7}=4\cdot\dfrac{2}{7}=\dfrac{8}{7}\)
b)\(\dfrac{7}{13}\cdot\dfrac{25}{6}-\dfrac{7}{13}\cdot\dfrac{-1}{6}=\dfrac{7}{13}\cdot\left(\dfrac{25}{6}-\dfrac{-1}{6}\right)=\dfrac{7}{13}\cdot\left(\dfrac{25}{6}+\dfrac{1}{6}\right)=\dfrac{7}{13}\cdot\dfrac{26}{6}=\dfrac{7}{13}\cdot\dfrac{13}{3}=\dfrac{7}{3}\)
c)
\(\dfrac{4}{13}\cdot\dfrac{5}{11}+\dfrac{4}{13}\cdot\dfrac{6}{11}-\dfrac{4}{13}=\dfrac{4}{13}.\left(\dfrac{5}{11}+\dfrac{6}{11}-1\right)=\dfrac{4}{13}\cdot\left(1-1\right)=\dfrac{4}{13}\cdot0=0\)