Cho a.b>hoặc= 1.CM:\(\frac{1}{1+a^2}\)+\(\frac{1}{1+b^2}\)>hoặc= \(\frac{2}{1+\left(a.b\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{HAB}=\widehat{HCA}\) (Do cùng phụ với góc HAC)
Xét tam giác HBA và tam giác HAC có
\(\widehat{HAB}=\widehat{HCA}\)
\(\widehat{BAH}=\widehat{AHC}=90^0\)
=> tam giác HBA đồng dạng với HAC
b) Theo Pythagoras => \(BC^2=AB^2+AC^2=10^2+15^2=325\) => \(BC=5\sqrt{13}\)
\(AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{10.15}{5\sqrt{13}}=\frac{30\sqrt{13}}{13}\)
\(HB^2=AB^2-AH^2=10^2-\left(\frac{30\sqrt{13}}{13}\right)^2=\) => \(HB=\frac{20\sqrt{13}}{13}\)
\(HC=BC-HB=5\sqrt{13}-\frac{20\sqrt{13}}{13}=\frac{45\sqrt{13}}{13}\)
c) \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.10.15=75\)
d) Có tam giác HBA đồng dạng với tam giác HCA
=> \(\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow AH^2=HB.HC\)
Trả lời
a^2 + b^2 - 2ab
= ( a^2 - 2ab + b^2 )
= ( a - b )^2 ≥ 0 ( luôn đúng )
Vậy...
\(M=\frac{x^2+2x+64}{x}=\frac{x\left(x+2\right)+64}{x}=x+2+\frac{64}{x}=\left(x+\frac{64}{x}\right)+2\)
\(>=2\sqrt{x\cdot\frac{64}{x}}+2=2\cdot\sqrt{64}+2=2\cdot8+2=18\)(bdt cosi)
dấu = xảy ra khi \(x=\frac{64}{x}\Rightarrow x^2=64\Rightarrow x=8\)
vậy min M là 18 tại x=8
Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)
Suy ra
\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)
Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)
Cách khác nhá.
Lời giải
Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)
Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)
Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(P=x^2+x+1=\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min(P) = 3/4
<=> x = -1/2
Mk chỉnh lại đề câu b: Chứng minh: \(AB^2=BH.BC\) hoặc \(HA^2=HB.HC\)
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC^2=6^2+8^2=100\)
\(\Rightarrow\)\(BC=\sqrt{100}=10\)
b) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{CAB}=90^0\)
suy ra: \(\Delta ABH~\Delta CBA\)(g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\) \(\Rightarrow\)\(AB^2=BH.BC\)
Chứng minh: \(AH^2=HB.HC\) thì c/m: \(\Delta HAB~\Delta HCA\)(g.g)
\(\Rightarrow\)\(AB^2=BH.BC\)
Ta có : 6(x + 1)2 - 2(x + 1)3 + 2(x - 1)(x2 + x + 1) = 1
<=> 6(x2 + 2x + 1) - 2(x3 + 3x + 3 + 1) + 2(x3 - 1) = 1
<=> 6x2 + 12x + 6 - 2x3 - 6x - 6 - 3 + 2x3 - 2 = 1
<=> 6x2 + 6x - 5 = 1
Sorry máy đơ mk giải tiếp nhé : 6x2 + 6x - 5 = 1
<=> 6x2 + 6x - 6 = 0
<=> x2 + x - 1 = 0
<=> x2 + x + \(\frac{1}{4}-\frac{5}{4}=0\)
<=> \(\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\sqrt{\frac{5}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{1}{2}\\x=-\frac{1}{2}-\sqrt{\frac{5}{4}}\end{cases}}\)
\(VT=\frac{1}{1+a^2}+\frac{1}{1+b^2}=\frac{1+b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\frac{1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\)\(=\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\)
Ta luôn có: \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2+b^2\ge2ab\) \(\Leftrightarrow\)\(a^2+b^2\ge2\) do \(ab\ge1\)
\(ab\ge1\) \(\Rightarrow\) \(a^2b^2\ge1\)
Khi đó: \(VT=\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\ge\frac{2+2}{1+2ab+1}=\frac{4}{2\left(1+ab\right)}=\frac{2}{1+ab}\)
\(\Rightarrow\)\(VT\ge\frac{2}{1+ab}\) hay \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) (đpcm)
Ta có: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)(đúng do \(ab\ge1\))
=> DPCM